ENTEROCCUS FAECALIS BIOFILM. FORMATION AND DEVELOPMENT IN VITRO OBSERVED BY SCANNING ELECTRON MICROSCOPY

Maria de los Á. Bulacio¹, Lucas R. Galván¹, Cristina Gaudioso², Rosa Cangemi², Marta I. Erribea⁴

¹ Department of Endodontics, School of Dentistry, National University of Tucumán, Tucumán, Argentina.
² Department of Microbiology, School of Biochemistry, National University of Tucumán, Tucumán, Argentina.

RESUMEN

Se realizó la detección de biofilm de Enterococcus faecalis aislados de conductos radiculares, desarrollándolo in microcubetas realizando tinción con Cristal Violeta 10%, elución con alcohol y tres procedimientos: no fijar, fijación con calor y fijación con formaldehído 10%. Se evaluó el biofilm formado realizando la lectura con lector de microplaca Versamax-Microplate-Reader (USA).

Se incubaron 20 porciones radiculares estériles en el medio TS caldo con E. faecalis (10⁸) durante 48 hs, 4, 7, 14 y 30 días. Transcurrido cada tiempo experimental se procesaron y observaron al microscopio electrónico de barrido (MEB).

Se evidenció significativamente mayor formación de biofilm en microplacas cuando se realizó fijación con formaldehído, que al fijar con calor y sin fijar (ANOVA p<0.0001). Al MEB se observó crecimiento del E. faecalis en todos los tiempos y desarrollo de biofilm a partir de 14 días de incubación. SEM confirmó biofilm formación after 14 days incubation.

Key words: biofilm, Enterococcus faecalis; scanning electron microscopy.

ABSTRACT

Biofilm produced by Enterococcus faecalis isolated from root canals was detected by growing it on microplates and using 10% crystal violet stain, elution with alcohol and three procedures: no fixation, heat fixation and 10% formaldehyde fixation. The biofilm was evaluated using a Versamax Microplate Reader (USA).

Twenty sterile root portions were incubated in TS broth with E. faecalis (10⁸) for 48 hours, 4, 7, 14 and 30 days, after which they were processed and observed by scanning electron microscopy (SEM).

Significantly more biofilm was found on the microplates for formaldehyde fixation than for heat fixation or no fixation (ANOVA p<0.0001). SEM showed E. faecalis growth at all times and biofilm development after 14 days’ incubation. Fixation with 10% formaldehyde was the most appropriate technique for detecting E. faecalis biofilm development on microplates. SEM confirmed biofilm formation after 14 days incubation.

Key words: biofilm, Enterococcus faecalis; scanning electron microscopy.

INTRODUCTION

Enterococci are natural inhabitants of the oral cavity and normal intestinal flora, and are recognized as opportunistic pathogens. Enterococcus faecalis is the most common species, and is responsible for 80–90% of human infections¹. Research has shown that areas in the canal which are inaccessible to instruments and irrigants may remain contaminated after biomechanical preparation and be responsible for persistent infection². Cases of apical periodontitis resistant to conventional treatment³ are attributed to the presence of biofilm inside the canal and at the apical end of teeth with pulp necrosis and chronic periapical lesion⁴. SEM observations of E. faecalis have shown that it adheres to collagen structures, colonizes dentin surfaces and may progress towards dentin tubules and form mature biofilm⁵. The aim of this study was to compare detection on microplates of biofilm formed by Enterococcus faecalis isolated from root canals, in Tryptone Soya (TS) broth supplemented with 1% glucose and 10% human serum, using three different techniques: no
fixation, heat fixation and 10% formaldehyde fixation, and observing the development of biofilm on root portions under scanning electron microscopy (SEM) at 48 hours, 4, 7, 14 and 30 days.

MATERIALS AND METHODS
The study included 10 patients who attend the Endodontics Department at the School of Dentistry at the National University of Tucumán and provided informed consent, with indication for retreatment of teeth due to the persistence of chronic-type periapical lesion.

After clinical-radiographic diagnosis, the patients rinsed their mouths with 0.12% chlorhexidine solution (Plac Out. Microsules Bernabó, Argentina). The area was completely isolated and the operative field disinfected with 1% chlorhexidine solution. Caries was eliminated using hand instruments and irrigation with 1% chlorhexidine. The access cavity was prepared with water-cooled high-speed diamond burs. The operative field was disinfected and the canal filling material was removed with H-files, followed by irrigation with 1 mL distilled water. Samples were taken with two standard Nº 20 paper points placed inside the root canal for one minute, and then placed individually in test tubes containing TS broth and transferred immediately to the laboratory.

In the laboratory we performed a semi-quantitative study by dilution in the following media: Azide agar for Enterococcus and Staphylococcus, MacConkey agar for Gram-negative bacilli, Blood agar for Streptococcus. The different colonies were counted and \(E. \text{faecalis} \) was identified according to morphological and physiological features\(^6\).

The three strains with greatest development on plates were selected and their ability to produce biofilm was studied.

Biofilm formation on microplates
The culture medium used was Trypticase Soya (TS) broth supplemented with 1% glucose and 10% human serum. Three \(E. \text{faecalis} \) strains isolated from the canals were selected and called strains 1, 2 and 3. Microplates were loaded with 200 µL of the medium with inoculum at a concentration of \(10^8 \), incubated at 37°C for 24 hours, without stirring, in triplicate. To detect biofilm production, the microplates were stained with 10% crystal violet (C.V.), washed with 95% ethanol to remove excess dye and subject to one of three different procedures:

- Without fixation
- Heat fixation
- Formaldehyde fixation

The biofilm formed was evaluated by measuring absorbance using a Versamax Microplate Reader (USA).

Biofilm development observed with scanning electron microscope (SEM)
Twenty disks were cut from the middle third of the roots of recently extracted upper central incisors using a water-cooled, high-speed Nº 1090 cylindrical bur (Sorensen, Brazil). The disks were sterilized and placed individually in TS broth enriched with 1% glucose and 10% human serum, and inoculated with \(E. \text{faecalis} \) at a concentration of \(10^8 \). The media were refreshed every 72 hours with the same inoculum concentration. Five experimental incubation times were used: 48 hs, 4, 7, 14 and 30 days, after which the samples were removed from the medium and placed individually in a solution of 8% paraformaldehyde, phosphate buffer and 16% glutaraldehyde and fixed for 48 hours at 4°C. They were washed 3 times for 10 minutes with phosphate buffer. A 1/1 osmium/ phosphate buffer solution (2% OsO₄) was added and left overnight. The osmium was discarded and the samples were washed twice for 10 minutes with 30% ethanol. The samples were dehydrated by passing through a series of alcohol concentrations: ethanol 50%, 70%, 80%, 90%, and 3 times 100%, with 10 minutes for each step. The 100% ethanol was discarded and 100% acetone added for 1 hour\(^7\). The samples were mounted on an aluminum specimen holder, sputter-coated with gold and viewed under high vacuum with a JEOL JSM-35CF microscope (Tokyo, Japan). Microphotographs were taken at 10000 X.

RESULTS
Biofilm forming assay on microplates
Strain 2 had the greatest development in TS broth supplemented with 1% glucose and 10% human serum for all three techniques used (Table 1), so we selected it for the SEM study. The control value (0.0360) was taken from the reading for the microplate without biofilm.
The values obtained with strain No. 2 for the formaldehyde fixation treatment were significantly higher than for the other treatments (ANOVA, p < 0.0001), Fig. 1.

Biofilm development observed with scanning electron microscope

Figures 2 to 6 show the development of *Enterococcus faecalis* under SEM at the different times. Biofilm is apparent as from 14 days.

DISCUSSION

This study used the ability of *E. faecalis* to form biofilm on polystyrene, which occurs due to the presence of a surface protein, the Esp-encoding gene.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Strain</th>
<th>Mean</th>
<th>95% Confidence Interval</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>No fixation</td>
<td>1</td>
<td>0.1463</td>
<td>0.14 - 0.1525</td>
<td>p < 0.0001</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.1613</td>
<td>0.1446 - 0.178</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.1263</td>
<td>0.1211 - 0.1315</td>
<td></td>
</tr>
<tr>
<td>Heat</td>
<td>1</td>
<td>0.1288</td>
<td>0.1225 - 0.135</td>
<td>p = 0.0017</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.1399</td>
<td>0.1372 - 0.1414</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.1289</td>
<td>0.1237 - 0.134</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>1</td>
<td>0.2587</td>
<td>0.216 - 0.3014</td>
<td>p < 0.0001</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.7303</td>
<td>0.5714 - 0.8892</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.1681</td>
<td>0.1573 - 0.1788</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Analysis of Variance. Absorbance reading on biofilms in nm for three *Enterococcus faecalis* strains using three techniques. The mean is the average of the readings for the four wells seeded with the same strain.
Biofilm production often depends on factors such as cell density and glucose concentration10, with several authors having proved that glucose supplement increases biofilm formation by \textit{E. faecalis}9-11 and other papers reporting that biofilms are denser in presence of glucose12. Our study took this factor into account. Not all strains have the same biofilm-producing capacity. Our study used 3 \textit{E. faecalis} strains isolated from root canals with endodontic failure. We selected the strain with the greatest capacity to produce biofilm on microplates, and used it to contaminate root dentin and observe biofilm development under SEM.

Duggan and Sedgley13 found no statistically significant difference in the formation of biofilm by \textit{E. faecalis} obtained from root canals, oral cavity and other parts of the body, using a similar culture medium and evaluating the optical density of the microplates, suggesting that the origin of the strain did not influence the result of their study. Zheng et al.14 found that 75.47\% of the \textit{E. faecalis} strains isolated from root canals with endodontic failure were able to develop biofilm. Wang et al.15 also found high biofilm forming rates by \textit{E. faecalis} isolated from root canals with endodontic failure, employing growth on microplates and SEM observations.

Wilcox16 report that early formaldehyde fixation may help show biofilm formation, and this technique was employed successfully in our study.

Our study found that \textit{E. faecalis} biofilm was observable at 14 days and mature biofilm at 30 days. Guerreiro-Tanomaru et al.17 report similar results. They used different substrates such as bovine dentin and bone, hydroxyapatite and gutta-percha, and reported biofilm development at 14 and 21 days, which they observed by using staining methods and confocal microscopy, finding the greatest development on hydroxyapatite. Wu et al.18 inoculated \textit{E. faecalis} on human teeth for 4 weeks to obtain biofilm. Somayaji et al.19 used SEM and found a high percentage of biofilm development 45 days. Du et al.20 made observations under confocal microscope on pieces of dentin incubated with \textit{E. faecalis} for 1 and 21 days, finding young and a mature biofilm, respectively, at those times. Our study shows...
that under the experimental conditions applied, it is possible to generate mature *E. faecalis* biofilm at 30 days’ incubation on the surface of human root dentin.

CONCLUSIONS

Enterococcus faecalis isolated from root canals was able to produce biofilm on microplates, which was best seen using 10% crystal violet stain, elution with alcohol and fixation with 10% formaldehyde. Mature *E. faecalis* biofilm formation was confirmed by SEM after 30 days’ incubation, using pieces of root dentin in TS broth supplemented with 10% human serum and 1% glucose.

ACKNOWLEDGMENTS

Partially supported by CIUNT, Tucumán, Argentina. We thank Dr. Marcela D’Urso for the statistical analysis.

REFERENCES

CORRESPONDENCE

Dr María de los Ángeles Bulacio.
Crisóstomo Álvarez 1487, CP 4000
San Miguel de Tucumán, Tucumán. Argentina
maritabulacio@hotmail.com