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Abstract— An adaptive identification algo-
rithm based on Second Order Section (SOS)
model structures is presented. The procedure
guarantees stable transfer functions whenever
the actual physical plant is stable, due to an
optimal Nehari approximation step performed
analytically online. The procedure is suitable
for real time applications. Some synthetic and
experimental examples illustrate the proposed
algorithm.
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I. INTRODUCTION

Adaptive identification algorithms have been used in
the area of adaptive control systems for a very long
time, both for feedback (FB) and/or feedforward (FF)
approaches (Goodwin and Sin, 1984; Tao, 2003). Usu-
ally for simplicity and computational speed in real
time applications, parametric linear schemes have been
implemented: RLS, NLMS, FXLMS, FULMS, as in
the case of Active noise control (Kuo and Morgan,
1995), for example. Nevertheless the traditional as-
sumptions in adaptive control: lack of perturbations
or high frequency uncertain dynamics and minimum
phase models, have generated at the end of the 80’s an
intense work in the area of robustness of adaptive laws
(Tao, 2003; Narenda, 1986; Ioannou and Sun, 1996).
These have been extensively studied since then, and
an excellent survey in this area can be found in Or-
tega and Tang (1989).

Still then in adaptive identification, the stability of
the resulting IIR model is generally not guaranteed,
causing serious practical problems particularly in FF
implementations. There are methods to convert IIR to
FIR like the Nehari shuffle (Kootsookos et al., 1992)
and a recent LMI optimal version in Yamamoto et al.
(2002), but the error is usually greater and requires
a larger number of parameters in general. The use
of TIR filters instead has the potential to decrease the
identification error due to the fact that it includes the
pole dynamics. In addition, this class of filters are in
certain applications more efficient in modelling signals
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and require smaller model orders (Rao, 1993). There-
fore an IIR filter that can guarantee a stable behavior
and can be used in real time applications is a necessary
tool in practical situations.

On the other hand, numerical problems also arise
in real time applications, depending on the structural
representation of the model. Take for example an
11th. order stable filter implemented with three dif-
ferent model structures: zero—pole (ZP), state space
(SS) and transfer function (TF), the latter in terms of
numerator and denominator coefficients, as follows:

(ziz ) Sz
7P , (TF) =2F———
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(88) Yk = Cxg + Duyg

The complexity of each model is O(m?) in the case
of SS and O(m) in the other two cases, therefore from
this point of view, the ZP and TF structures are more
efficient. Nevertheless, it is a well known fact that the
pole locations in the case of the TF structure, partic-
ularly in high order models, are significantly modified,
even producing unstable poles (|p;| > 1), as illustrated
in Table 1. On the other hand, it is easier to use the
TF representation as the difference equation which im-
plements the filter in real time, as follows:

Ye = —
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Therefore, the TF representation has advantages in
terms of complexity and implementation, but serious
disadvantages in terms of perturbations of pole loca-
tions, at least in high order models.

The solution to this problem is obtained by a series
connection of Second Order Sections (SOS), which is
an adequate way of implementing filters in real time.
The SOS structure is numerically more efficient than
the plain TF structure due to the fact that it has a
2nd. order numerator and denominator, therefore pre-
serving the original pole-zero locations. In addition,
cascade-forms of SOS provide an attractive realization
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Table 1: Absolute value of poles of a discrete-time sys-
tem represented in zero—poles (ZP), state-space (SS)
and transfer function (TF).

7P SS TF
0.0034 0.0034 0.0034
0.9975 0.9975 1.0295
0.9975 0.9975 1.0295
0.9949 0.9949 1.0128
0.9949 0.9949 1.0128
0.9607 0.9607 0.9924
0.9608 0.9608 0.9924
0.9802 0.9802 0.9646
0.9995 0.9995 0.9646
0.9995 0.9995 0.9434
0.9961 0.9961 0.9434

for adaptive IIR filters because the stability of the filter
parametrization is easily monitored, and because filter
pole locations are readily obtained from the adapted
parameters with low computational cost (Williamson
et al., 1995).

In the previous example, the SOS’ pole locations
coincides with the ZP and SS structures. Furthermore
it is still O(m) and each SOS can be implemented as
a difference equation connected in series with all other
SOS’, as follows:

_ ”11—/[2 220 + 21 + b}
z72ak + z7tal + 1

Y(z)
U(z)

(2)

i=1

and each SOS is implemented as a 2nd. order differ-
ence equation:

Yi. = bo uj, + 0] uf_y + b5 uf_y — al Yi_q — ab yi_o
where a}) = 1 for simplicity.

There are many applications where a stable adap-
tive real time identification is needed, one of them be-
ing Active Noise Control (ANC) (Lueg, 1934; Nelson
and Elliot, 1992; Kuo and Morgan, 1995). There, sig-
nificant noise attenuation can be achieved through FB
and/or FF controllers. In the first case, there are many
well known limitations of the feedback loop that pro-
duces a poor performance. These performance limita-
tions are mainly due to the non-minimum phase nature
of the plant (see Freudenberg and Looze, 1985; Seron
et al., 1997 and also Hong and Bernstein, 1998) and
its revision in Freudenberg et al. (2003), which in turn
is derived from the time delay of sound propagation,
e.g. acoustic tubes. Instead, a FF filter performs bet-
ter because it is not restricted to the loop limitations.
In this kind of application, the FF controller acts as
a real time identifier of the acoustic noise signal re-
ceived by the error microphone at the end of the tube,
in order to cancel it at that point. Usually an adap-
tive identification scheme is used, which can produce
an unstable behavior in many situations. More details
will be given in the application example at the end of
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this work. A complete experimental study of a hybrid
— FF/FB controller applied to ANC in a tube can be
found in Cugueré et al. (2007).

As a consequence, a convergent adaptive identifier
with guaranteed stable behavior and numerical robust-
ness is very useful in these situations. Such an algo-
rithm will be described in this work. Numerical ro-
bustness is achieved by the use of SOS’ and the sta-
bility of each section is guaranteed by a stable Nehari
projection (Ball et al., 1990), which provides the near-
est (optimal) stable model to a possibly unstable one.
Due to the fact that the objective of this procedure
is to implement it in real time situations, the Nehari
projection is developed in analytical form.

The paper is organized as follows. Next section
presents the background material: an analytic version
of the Nehari stable projection and the adaptive iden-
tification procedure. Section III. presents the main
result of this work, followed by Section IV. which il-
lustrates different aspects and limitations of this pro-
cedure through several examples. Final conclusions
are drawn in Section V.

II. PRELIMINARY RESULTS

A. Nehari’s stable projection

Nehari’s result is well known in the area of systems and
control (Ball et al., 1990). It produces, both for dis-
crete and continuous time systems, the optimal stable
projection of an unstable system'. Furthermore, the
optimality implies that the resulting error is an all-
pass filter with a gain corresponding to the highest
Hankel singular value of the original system. It can be
stated as follows:

Theorem II1 Given a completely unstable system
U(x), its optimal stable projection has the following
solution:

S [[U(z) = 8(@)lo = Bl =

where Hoo is the Hardy space corresponding to causal
transfer functions, E(x) is an all-pass filter, & is the
largest Hankel singular value of U*(2) € Heo and vari-
able x holds for either s or z, both complex variables
corresponding to the Laplace or Z-transforms of con-
tinuous or discrete time systems, respectively.

Here both, the stable projection and the correspond-
ing error in the case of 2nd. and first order models have
been computed analytically. Due to the fact that the
purpose is to achieve a real time fast implementation,
without loss of generality, a discrete time model has
been considered. Therefore, given a SOS with poles

I Actually it produces the optimal stable projection of a to-
tally unstable model, i.e. with all its poles unstable. In the
general case, the projection applies only to the unstable poles,
and the stable ones remain the same.
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it’s stability condition needs to be verified, and there
are 3 cases:
Stable poles:
fs(2) = [(2).
Stable—Unstable poles: The SOS is separated into
it’s stable and unstable parts, as follows:

No modification is performed, i.e.

o4z 27t 14 w927t

fz) T+prz=t  14pyz!
H, H,
Ty = bo —1

_ pf+xoa2+b2—p1b1

1= \/affélaz
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where the unstable pole has been assumed as |p;| > 1.
Similar results are derived by simply changing p; < p2
in the previous equations, if |pa| > 1.

The optimal Nehari stable projection of the unsta-
ble term is X,,; with a constant approximation error
over all frequencies &, producing a stable optimal ap-
proximation of the SOS fs(2):

ZTo — T1P1
X, = —o—nih
pt 1 7p%
o = I 7p1Xopt
fg(z) = Xopt + H‘;(Z)

(Xopt + 1) + (1‘2 +p2Xopt)Z_1
1+ poz—1
Unstable poles: Here both poles are unstable, i.e.

[pi] > 1 and |p2| > 1. The optimal Nehari stable
projection of f(z) is:

no —I—nlz_l

fS(Z) - 1+ dl,Z*l

ng = by — asd1o
ny =by —ai1bg —asd — dy [5‘@1(1 — a2) — bO}
dy = asby —ajasbo+a(1—a?)

1= "ay[6a1 (1—az)—bo]+bz

and the constant approximation error over all frequen-
cies is the solution to the following quadratic equation:

ad?+B5+~v=0

a=1-a}(ag —1)?> +a3(a3 —2)
B =ai(as — 1)*(bo + ba) — by + azbi (1 + az — a3)
Y= alagbobl — (a2b0)2 — agb% — bobga%

+2(L2b0[)2 -+ a1b1b2 — b%

The choice of & corresponds to the stable case, i.e.
|d1| < 1.

B. Adaptive identification procedure

Without loss of generality, any robust adaptive identi-
fication procedure could be used, due to the fact that
the algorithm relies on the SOS structure and the op-
timal Nehari stable approximation (in closed form).
Here, it has been decided to test the algorithm using
the well known Switching o-modification (Tao, 2003).
This adaptive identification algorithm, can be stated
as follows (Toannou and Sun, 1996):

Given the i-th SOS as in Eq. (3):

27205 + 2718 + b))
z72a + 27 tal + 1

fi(z) =

define the parameters and regressors as follows:

0 uj,
. i , Uj—y
O, = 5 Th= | Up_so
aj i1
aj ~Yh—2

Assume that a bound M? of the norm of the true
parameter ©° is known, i.e. ||©%| < M, where || - || is
the Euclidean norm of a vector. Then the algorithm
which produces the i—th SOS model y , at time t = #;,
and the parameter update is:

Y = [T 051 (4)

Kp = T )
o+ [|ri |

& = Kilyh— vl (6)

0, = (1—03)0,_1 + e, (7)

where (¢, ) are the convergence gain and forgetting
factor parameters, both chosen by the designer with
0<c<1and

. [ oo it ||6i| > 2M¢
Tk 00 i |6 < 2M,

and where 0 < g9 < (1 — ¢)/2. Next, and due to the
fact that this algorithm cannot assure the stability of
the SOS, the Nehari projection algorithm described

above is applied in order to obtain the estimates 92 of
the i—th SOS.

III. MAIN ALGORITHM

Next, the identification algorithm is presented based
on a system modelled as a chain of N SOS. The input
to the first one is the physical input of the system
and the output of the N-th SOS its physical output.

A. I/0 propagation

The algorithm identifies each SOS separately connect-
ing the results altogether. To this end, the inputs of
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Figure 1: Inputs and outputs propagation scheme.

the i—th SOS need to be defined as the outputs propa-
gated from the (i — 1)~th SOS. Similarly, the outputs
from the i—th SOS are (inversely) propagated from the
(i + 1)~th SOS, as follows:

i—1 i—1

i i—1 i i i1
Uy, = [uk Up_1 Up_o —Up_y _Uk—z] 01

; 1 ) . ) ) .
7 7 7 i+1 1+1 i+1
Yr = pitl {[0 Y1 TYk—2 Yp— yk—ﬂ 0x 1

0

i+1

+Y5

Here, the first input coincides with the physical in-
put uj, = uy and the same for the last (N-th) output
yN = yx. In the propagation of the input signal ui,
the updated value of the parameters 9};‘1 can also be
used. The propagation scheme has been represented
in Fig. 1 and is part of the main algorithm in Fig. 2
as the blocks Propaga_Y and Propaga_U. Referring to
the initialization, the values u} = yi = 0, Vi, Vk < 0
could be adopted, and an initial off-line identification
could provide the initial values for the estimated pa-
rameters.

B. Algorithm

The complete flow diagram is illustrated in Fig. 2. The
external loop goes from time ¢, to t5; and produces the
model output 4, at time t;. The propagation scheme
has been explained previously and produces the inputs
and outputs for each SOS, here denoted generically as
the i—th SOS. These will be part of the regressor vec-
tor ri used in the next step. The identification (ID
S0S) has been explained in Section II. B. and produces
the i~th SOS updated parameter vector 0% at time .
As explained previously, at this stage any convergent
identification algorithm can be applied. Next, and de-
pending on the stability of the SOS due to the values
of the parameters 6%, the projection procedure, ex-
plained in Section II. A. is applied at stage Project
S0S in Fig. 2. It produces a stable set of parameters
Oi_smble that will be used to produce the model out-
put y¢ ., according to Eq. (4). An error term yi — vy’ .
is also generated to keep track of the convergence of
the whole procedure. The number of SOS sections is
arbitrary, and the total order of the system’s model
can be odd. In that case, the remaining first order
section can be easily projected in case it goes unsta-
ble at some point in the identification procedure. This
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Figure 2: Algorithm flow diagram.

has been explained in Section II. A. as a particular
case when only one of the poles of a SOS section is
unstable.

C. Analysis

The effects of both, the propagation scheme
(Propaga.Y, Propaga U) and the Nehari projection
(Project S08), on each SOS can be represented by
a modelling error process, and the system can be de-
scribed by the following difference equation:

i_qi i i i i i
Y = bo up + b1 up g +byup o —a] Yp g — a3 Yp o
i
+AL
where Al represents the modelling and measurement
errors, and verifies

AL < 6L |ri || + s 0L € Lo ph € Loo
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Here 6, takes into account the parameter errors in sec-
tion i and pf the effect of the propagation errors due
to other sections. As a consequence of this inequal-
ity and according to Tao (2003), 6% is bounded and

{lh — v J@+ i} € £

Remark IIL1 The introduction of the term —a; ,i_l
in the adaptive identification algorithm (a modi-
fication in  fact of the well known gradient al-
gorithm) ensures the boundedness of 0% and that
{[y}€ - yink]z [(a+ Hri||2)} € Ly. This effect, that is
local for each SOS, produces a robust, with respect to
the initial estimates of the parameters, identification
algorithm for the whole cascade.

It must be pointed out that if any other robust iden-
tification algorithm is used instead of the Switching o-
modification, similar results will be obtained.

D. Numerical issues

The online Nehari projection performed analytically
takes care of the possible appearance of unstable poles
along the real time identification procedure. Further-
more, the SOS model structure provides greater nu-
merical stability to the implementation. Nevertheless,
as with any other algorithmic solutions to a particular
problem, there are numerical issues to be taken into
consideration, both for programming and implemen-
tation. These are as follows:

e Non minimum phase (NMP) zeros: These ze-
ros produce unstable behaviors when propagat-
ing the output signals yi to produce the equiva-
lent i-th SOS inputs u}, (see Fig. 1).

e Model order reduction: The Nehari stable ap-
proximation reduces the order of the i—th SOS
unstable model according to the number of un-
stable poles it has, i.e. for 1 unstable pole, to
order 1; for both unstable poles, to a constant
(see Section II. A).

These are solved as follows:

e The input and output signals are scaled at each
time step k in order not to exceed certain abso-
lute value limits.

e The procedure here is to perform the stable pro-
jection (and hence the SOS order reduction) at
step k, but at next step, return to the previous
data that generated a stable SOS in the next pre-
vious step. The argument here comes from the
fact that the actual system is always open loop
stable.

IV. EXAMPLES
A. Example 1.

This example illustrates the performance of the pro-
posed algorithm with respect to the initial errors in

Table 2: Coefficients of the SOS represented as trans-
fer functions.

SOS1 SOS2 SOS3
bo 1.4286 1 1
by 2.4426 0.39854 -1.3084
ba 1.2422 1.0125 0.79505
ao 1 1 1
al 1.2682 0.41029 -0.82137
az 0.48484 0.50966 0.57812

Table 3: Initial coefficients of the identification algo-
rithm represented as transfer functions.

SOS1 SOS2 SOS3
bo 1.3857 1.1167 1.0917
by 2.0916 0.4562 -1.2241
ba 1.0648 0.8643 0.8377
aop 1 1 1
ai 1.2374 0.3667 -1.0155
az 0.4394 0.4455 0.5446

the values of the estimated system parameters 65, a
practical constraint which should always be taken into
account. In this case a 6-th. order stable model com-
posed of three SOS has been identified. The coeffi-
cients of each of the SOS are given in Table 2. The
initial values of the model parameters adopted were
randomly generated to differ with those above in ap-
proximately 15 %. These values are given in Table
3.

The input to the system is a train of pulses and the
model and system outputs are illustrated in Fig. 3.
Note that the algorithm behaves well, taking into ac-
count the highly demanding input and the relatively
high uncertainty in the initial setting of the parame-
ters. The following examples will show that the per-
formance diminishes when the uncertainty and/or the
number of SOS in the cascade increase.

Although the Switching ¢ modification algorithm
has been used, similar results were obtained using in
the simulations other robust identification procedures
such as the Projection algorithm (Tao, 2003). This has
also been illustrated in the previous example. This
fact shows that the structure of the proposed algo-
rithm: propagation scheme - robust identification - Ne-
hari projection is central and the robust identification
algorithm applied is of secondary importance.

B. Example 2.

This and the next example are taken from a practical
application which uses measurements from an acoustic
tube in an active noise control experience. The tube
is 4 meters long and has a reference and error micro-
phones located at both extremes (see Fig. 4). In this
example, the input signal is produced by an industrial
fan and has been measured by the reference micro-
phone located next to it. The output signal has been
measured by the error microphone at the other end
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Figure 3: 6-th. order model approximation using the
Switching ¢ modification algorithm.

of the tube, therefore the primary circuit is identified.
The identification scheme is based on the Projection
algorithm (Tao, 2003) and the initial coefficients of
all SOS sections have been computed from an off-line
identification of the complete transfer function based
on a parametric-nonparametric technique (Parrilo et
al., 1999). This is a convenient practical approach
so that the algorithm is initiated from a close enough
neighborhood of the actual parameters. The type of
off-line identification procedure used is irrelevant as
long as it produces a sufficiently good model, taking
advantage of the fact that it does not need to be im-
plemented in real time. The results are presented in
Fig. 5, which evidence a good fit of the experimental
data.

C. Example 3.

The next example considers experimental data gener-
ated by the same tube, but with the control speaker
as the main noise source, which produces a multi—
sinusoidal signal. The output is again obtained from
the error microphone. The system to be identified is
the secondary circuit based on a high order model
(40th). Again, a previous off-line identification has
been made by means of a parametric-nonparametric
robust identification algorithm in Parrilo et al. (1999).
The online identification scheme is again based on the
Projection algorithm and has considered the first 500
data points. The remaining 1000 data points are used
as a validation test. Here the main objective is to
test the algorithm against numerical errors produced
in cases where high order models are used. The fit is
good enough and the error can be seen in Fig. 6 to be
bounded.
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G microphone SO microphone O
Secondary circuit

Figure 4: Active noise control experiment and concep-
tual diagram.

V. CONCLUSIONS

A robust adaptive identification algorithm based on
a SOS-cascade realization with forward and backward
propagation of the input and output regressors has
been presented. Stability of the estimation of each
SOS (and as a consequence of the whole cascade) is
obtained via a Nehari projection. Simulated and ex-
perimental examples illustrate the performance of this
algorithm.
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