
Latin American Applied Research  42:343-350 (2012) 
 

 343 

IMPROVED NEURAL NETWORK BASED CFAR DETECTION FOR 
NON HOMOGENEOUS BACKGROUND AND MULTIPLE  

TARGET SITUATIONS. 
 

N.B. GÁLVEZ†, J.E. COUSSEAU‡, J.L. PASCIARONI† and O.E. AGAMENNONI‡  

† SIAG -Servicio de Análisis Operativos, Armas y Guerra Electrónica Base Naval Puerto Belgrano -Av. Colón s/n - (8111) Pun-
ta Alta. Bs.As.    E-mail: ngalvez@uns.edu.ar, pasciaro@uns.edu.ar  

‡ Instituto de Investigaciones en Ingeniería Eléctrica (IIIE) -Depto. de Ing. Eléctrica y de Computadoras. Universidad Nacional 
del Sur -Av. Alem 1253 -(8000) Bahía Blanca -Bs.As. jcousseau@uns.edu.ar, oagamen@uns.edu.ar 

 
Abstract— The Neural Network Cell Average -

Order Statistics Constant False Alarm Rate 
(NNCAOS CFAR) detector is presented in this work. 
NNCAOS CFAR is a combined detection methodol-
ogy which uses the effectiveness of neural networks 
to search for non homogeneities like clutter banks 
and multiple targets within the radar return. In ad-
dition, the methodology proposed applies a conven-
ient cell average (CA) or order statistics (OS) CFAR 
detector according to the context situation. Exhaus-
tive analysis and comparisons show that NNCAOS 
CFAR has better performance than CA CFAR, OS 
CFAR and even CANN CFAR detectors (the latter, a 
previously proposed neural network based detector). 
Furthermore, it is verified that the new proposal 
presents a robust operation when maintaining a con-
stant probability of false alarm under different ra-
dar return situations.  

Keywords— Neural Networks, threshold, CFAR, 
clutter, multiple targets, detection. 

I. INTRODUCTION 
In a previous work, the CANN CFAR was presented; it 
performs an homogeneity analysis of the radar return 
clutter by means of a neural network (NN). It was 
demonstrated that the NN homogeneity test has better 
performance when determining non homogeneities 
within a radar return than classical methods (Gálvez et 
al., 2011).  

Some characteristics of classical CFAR algorithms 
are the following:  
 The CA CFAR processor is the optimum CFAR pro-
cessor (maximizes detection probability) in a homoge-
neous background for certain well defined conditions1. 
As the size of the reference window increases, the de-
tection probability approaches that of the optimum de-
tector which is based on a fixed threshold (Gandhi and 
Kassam, 1988).  
 The OS CFAR processor exhibits some loss of detec-
tion power in homogeneous noise background compared 
with the CA but its performance in a multiple target en-
vironment is clearly superior (Gandhi and Kassam, 
1988).  
                                                           

1 Optimality can be shown when the reference cells contain inde-
pendent and identically distributed (IID) observations governed by an 
exponential distribution. 

 Multiple target situations, lead to almost negligible 
losses in OS CFAR processing compared with conven-
tional CFAR processing (Rohling, 1983).  
 The OS CFAR processor is unable to prevent exces-
sive false alarm rate at clutter edges, unless the thresh-
old estimate incorporates the ordered sample k near the 
maximum, that is unless k is very close to M; but in this 
case the processor suffers greater loss of detection per-
formance (Gandhi and Kassam, 1988).  

Gandhi and Kassam (1988) suggest that it may be 
interesting to consider adaptive versions of the OS 
schemes. For example, in the OS CFAR scheme, we 
may set the value of the kth sample adaptively based on 
some procedure that infers the background situation. 
This procedure will simply test whether the background 
is homogeneous or contains regions of clutter transitions 
(Gandhi and Kassam, 1988). The difficulty in finding 
one processing algorithm that accommodates the variety 
of environments encountered in practice has led to the 
development of composite processors (Smith and 
Varshney, 2000).  

Taking advantage of the above classical CFAR char-
acteristics, the NNCAOS CFAR offers the possibility of 
making an on line classification to each radar return by 
means of NN, with the purpose of applying the appro-
priate CFAR process over each range cell. This proces-
sor includes the same efficient NN block as the CANN 
CFAR (Gálvez et al., 2011) to estimate homogeneity in 
the case of clutter banks (CB), and incorporates an addi-
tional NN block to find out whether the radar return 
contains multiple targets (MT). These two NN blocks 
search for non homogeneities CB and MT within the ra-
dar return that allow to define suitable contexts for 
CFAR detection.  

This work is organized as follows. In section II, 
some related basic detection models and notation are 
presented. The novel NNCAOS CFAR method is ex-
plained in Section III. A complete performance analysis, 
including simulation and comparisons, is presented in 
Section IV. Finally, the conclusions are expressed in 
Section V.  

II. SOME BASIC CONCEPTS 
In this section homogeneous and non homogeneous ra-
dar returns containing CB and MT are studied. A brief 
description of the model used, the Weibull radar return, 
is made. In addition, two classic CFAR detection 
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schemes are reviewed: the OS and CA, where related 
threshold parameters, Pfa and Pd, are discussed. Consid-
ering the CFAR detection methodology to be described 
in the next section, a basic review of neural networks in 
this context is given in Gálvez et al. (2011).  

A. Model Description  
Because clutter is a random phenomenon, it is usually 
described in probabilistic terms, i.e. by a function of 
density of probability (pdf). In the last years, with the 
development of high resolution radars, it became evi-
dent that the clutter cannot always be modeled with a 
Gaussian distribution. The excessive increment in the 
amplitude of the waves, originating peaks in the distri-
bution, surpasses the fixed threshold in the detection, 
causing an excessive number of false alarms. In recent 
investigations on sea clutter modeling, adaptive models 
have been used with other distributions such as Weibull, 
Rayleigh and K, which decrease the number of false de-
tections. However, sea clutter constantly changes over 
time and none of the previous distributions can model it 
completely (López Estrada et al., 2004).  

In that case, adaptive models have variable parame-
ters that can be adjusted to the existing sea conditions 
(according, for example, to the Beaufort scale2). In this 
way it is possible to associate an adaptive model to a 
group of sea states (López Estrada et al., 2004). Let xi 
be an observation taken within some resolution cell i 
which represents a sampled radar return, observed over 
a time interval window (cell under test, CUT). The ob-
servation xi may be composed by target si plus clutter ci 
or clutter only, as given by  
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xi may be considered to be a sampled function from one 
of two random processes. One is the sample of xi under 
the condition that no signal is present H0. The other, H1, 
is the sample of xi under the condition that both signal 
and clutter are present (Minkler and Minkler, 1990).  

In this work the clutter is assumed to have Weibull 
distribution (Doyuran and Tanik, 2007) given by 
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where α is the scale parameter (indicating the energy 
level of the median) and β is the shape parameter (indi-
cating the degree of distribution skewness) (Minkler and 
Minkler, 1990). The Rayleigh distribution is a special 
case of the Weibull distribution with β = 2. The mean 
value of the Weibull distribution varies according to the 
shape parameter, making it possible to describe range 
cells with values that can represent sea states of 1 to 3 
(López Estrada et al., 2004).  

The variability of the context of the radar return is 
modeled in this work considering two possible situa-
tions (sea conditions):  
                                                           

2 The Beaufort scale is used as a measure of the wave height, 
classifying the sea in 10 levels with wave height of 0 feet to 45 feet. 

Case 1  
Radar returns are modeled using (homogeneous) 
Weibull distribution according to Eq. (2) for different 
shape parameters (β). The Weibull clutter model has 
been used to model both land and sea clutter and can 
generally be matched to experimental data over a much 
wider range of conditions than other distributions (as for 
example the log normal or Rayleigh models (Mahafza, 
2000)).  
Case 2  
Radar returns are modeled using non homogeneous 
Weibull distribution, i.e. considering CB and MT. Clut-
ter phenomena may be caused by a number of different 
sources. It may become necessary to identify clutter re-
gions of differing clutter types and to describe their 
properties (in addition to type) such as size and borders, 
power and spectral features. The assumption of a uni-
form (homogeneous) clutter situation within the refer-
ence window is no longer maintained. Instead, provi-
sions are made to handle transitions in clutter character-
istics, clutter areas of small extensions, and interfering 
target echoes occurring within the reference window of 
the radar test cell (Rohling, 1983).  

In this case, two specific situations are considered:  
 Clutter banks (CB): In the case of non homogeneous 
returns, the clutter is assumed to have Weibull ampli-
tude distribution and the distribution parameters change 
abruptly in range. A typical example of non homogene-
ous clutter return is illustrated in (Gálvez et al., 2011).  
 Multiple targets (MT): This situation is presented 
when two or more closed useful targets are present in 
the CFAR window. Here a deterministic target model is 
preferred in order not to mix up the effects of mutual 
masking and of fluctuation (Rohling, 1983). In this case 
two situations are considered, a group of targets situated 
far away from clutter banks or a group of targets situat-
ed near the clutter bank. With many CFAR procedures, 
such a signal situation results in undesired effects such 
as masking of closely spaced targets (Rohling, 1983).  

B. Conventional CFAR detection  
A simplified CFAR detector is illustrated in Fig. 1. The 
CFAR detector can be described as a shift register with 
the radar return signal as the input. The amplitude in the 
CUT is compared to the CFAR detector output, scaled 
by δ (Pfa), the threshold multiplier, which is a scalar fac-
tor. The CFAR detector applies an algorithm to the M 
range cell values on both sides of the CUT. Immediate 
neighbouring cells are called buffer cells and are dis-
carded to avoid contamination with the edge of the 
matched filter output from the target return (Rifkin, 
1994). The detection threshold is computed so that the 
radar receiver maintains a constant pre-determined false 
alarm Pfa (Mahafza, 2000).  

The statistic Z, as depicted in Fig. 1, which is pro-
portional to the estimate of total noise power, is formed 
by processing the contents of M reference cells sur-
rounding the CUT whose content is X. A target is de-
clared to be present if X exceeds the threshold T. Here T  
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Figure 1: CFAR Scheme 

is a constant scale factor used to achieve a desired con-
stant Pfa for a given window of size M, when the back-
ground noise is homogeneous. The detector configura-
tion varies with different CFAR schemes (Gandhi and 
Kassam, 1988). 

CA CFAR  
The CA CFAR processor updates threshold T by esti-
mating the mean level in the window of M range cells as 
given by (Gandhi and Kassam, 1988),  
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This detector exhibits severe performance degradation 
in the presence of an interfering target in the reference 
window or in regions of abrupt change in the back-
ground clutter power (Gandhi and Kassam, 1988). Also, 
further false alarm rate degradation occurs if the extent 
of the clutter area is smaller than the window size (Gan-
dhi and Kassam, 1988).  

In the case of double target situation, the CA CFAR 
detector shows considerable deficiencies since any am-
plitude observed within the reference area simply is tak-
en as clutter and no discrimination is possible between 
actual clutter returns and echoes of neighboring targets. 
The result is that one target may suppress the other or 
both targets may even remain undetected (Rohling, 
1983).  

OS CFAR  
Another example is the OS CFAR detector proposed by 
Rohling, which has been considered to alleviate both of 
the above-cited problems. Furthermore, the OS CFAR 
processor may resolve multiple targets quite well, but it 
lacks of effectiveness in preventing excessive false 
alarms during clutter power transitions (Gandhi and 
Kassam, 1988).  

In this algorithm the amplitude values taken from 
the reference window are first rank ordered according to 
increasing magnitude, i.e., x1x2…xM. The central 
idea of OS CFAR procedure is to select one value xk, 
where 1kM from the previous sequence, and to use it 
as an estimate for the average clutter power E[x] as ob-
served in the reference window (Rohling, 1983).  

The use of the ordered statistic in the context of 
CFAR processing does not define a single methodology 
but rather a series of different CFAR methods. For any 
given random variable xk a distinct CFAR procedure is 

established. For practical application, only a few of the 
M possible values are of interest (Rohling, 1983). 
Though, the detection performance of the OS CFAR 
processor is independent of the location of the interfer-
ing targets in the reference window.  

As a matter of fact, the OS CFAR detector, consider-
ing mean-level CFAR schemes, exhibits some loss of 
detection performance in homogeneous noise back-
ground compared with the CA processor, but its per-
formance in a multiple target environment is clearly su-
perior (Gandhi and Kassam, 1988).  

C. CFAR threshold  
When the clutter is modeled using a Weibull distribu-
tion, the detection threshold T can be obtained as a func-
tion of the clutter expectation E[x] and a scalar function 
of Pfa (Gálvez et al., 2011).  

In the case of the CA CFAR, an estimate of E[x], µ, 
can be obtained by forming the mean value of samples 
taken from range cells leading, trailing or surrounding 
the CUT. Then, an estimate of threshold T, T‘, can be 
formed according to (Gálvez et al., 2011)  

 MPT faCA ,'         (4) 
where δCA(Pfa,M) is the CA CFAR threshold multiplier, 
a scalar function of Pfa and sample size M (Mahafza, 
2000).  

When working in homogeneous background, Pfa is 
maintained constant for the corresponding threshold 
multiplier. However, in situations of CB or MT, Pfa is 
no longer maintained and is drastically modified. By 
this reason, in presence of CB in the radar return, the 
threshold multiplier should be increased in order to 
maintain a constant Pfa. This problem occurs because 
the CA CFAR fails in the CB edges giving false detec-
tions.  

On the other hand, the OS CFAR resolves closely 
spaced targets effectively for values of k (index associ-
ated to the CUT that represents the noise and clutter) 
different from the maximum (Gandhi and Kassam, 
1988). The OS CFAR threshold is expressed as  

 MPT faOS ,'         (5) 
where γ is the selected k-ranked cell to represent the 
noise and clutter level. The general expression for the 
Pfa, as a function of the actually used scale factor and 
the threshold multiplier in Weibull background is given 
by Levanon and Shor (1990)  
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Figure 2: OS CFAR threshold multiplier δOS vs different k 
values for Pfa =110-3 and Pfa =110-5  
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Figure 2, shows the OS CFAR threshold multiplier δOS 
variation against the k sample for M=40, Pfa =110-3 and 
Pfa =110-5 for a Weibull background with parameters 
α=1 and β=2. The curves were obtained by Monte Carlo 
simulation method. The results are very similar to those 
obtained by Eq. 6. The principal drawback of applying 
Eq. 6 is that only integer values of δOS should be used 
due to the factorial function, making it difficult to obtain 
results for intermediate values.  

III. NNCAOS CFAR 
Additional motivations for developing a new CFAR 
method and a detailed description of the novel Neural 
Network Cell Average Order Statistic Constant False 
Alarm Rate (NNCAOS CFAR) detector are presented in 
the following.  

A. Motivation for new CFAR methods  
Excessive number of false alarms at clutter edges and 
degradation of the Pd in multiple target environments in 
the CA CFAR detector are the prime motivations for 
exploring other CFAR schemes that discriminate be-
tween interference and the primary targets (Gandhi and 
Kassam, 1988).  

In the case of non homogeneous radar returns (with 
CB or MT), the CA CFAR Pfa is no longer constant. 
The samples corresponding to the CB and MT, are aver-
aged in the CFAR window, resulting an overall thresh-
old increase and false detections at clutter edges. On the 
other hand, OS CFAR detector is more robust than CA 
CFAR, especially when the k sample is high (near M). 
However, missing detection could occur in MT situa-
tions. The performance of this processor is highly de-
pendent upon the values for k. Despite that OS CFAR 
detector exhibits some loss of detection performance in 
homogeneous noise background compared with CA 
CFAR, its performance in a multiple target environment 
is clearly superior (Gandhi and Kassam, 1988).  

We take into account that the performance of the OS 
CFAR processor is highly dependent upon the values 
for k. For example, if a single extraneous target appears 
in the reference window of appreciable magnitude, it 

occupies the highest ranked cell with high probability. 
The estimate will almost always set the threshold based 
on the value of the interfering target. This results in an 
increase of the overall threshold and may lead to a target 
miss. If, on the other hand, k is chosen to be less than 
the maximum value, the OS CFAR processor will be in-
fluenced only slightly for up to M-k interfering targets 
(Gandhi and Kassam, 1988).  

Of course, we are interested in both cases, i.e., regu-
lating the false alarm at the clutter edges and minimiz-
ing target miss in the multiple target situations (Gandhi 
and Kassam, 1988). For this reason, different CFAR 
processors have been proposed to overcome the variety 
of situations that could be present within the radar re-
turn, i.e., CB, jamming, ice, multiple target, etc. (Gan-
dhi and Kassam, 1988; Rohling, 1983; Haykin et al., 
1991; Haykin and Deng, 1991; Smith and Varshney, 
2000). If it were possible to have a priori knowledge of 
each situation, the most appropriate CFAR processor 
could be chosen for each case in order to achieve the 
best Pd while at the same time, to maintain intact the 
CFAR function that is to keep a constant false alarm 
rate.  

Several authors have proposed different analytical 
methods to solve non homogeneous situations within 
the radar return (Smith and Varshney, 2000; Doyuran 
and Tanik, 2007). In this work, neural networks are pro-
posed to take advantage of their efficiency (in terms of 
lower computation time than other schemes) consider-
ing real time processing (Gálvez et al., 2011). Using NN 
it is possible to make a classification to each radar re-
turn while working in real time. Haykin et al. (1991) 
and Haykin and Deng (1991) proposed a clutter classifi-
cation methodology to distinguish between several 
mayor classes of radar returns including weather, birds 
and aircraft. Of particular interest is the use of a multi-
layer feedforward NN as the basis for classifying prima-
ry radar returns in, for example, aid traffic control envi-
ronment applications (Haykin et al., 1991; Haykin and 
Deng, 1991).  

CANN CFAR, presented in a former work, com-
bines Maximum Likelihood (ML) for clutter parameter 
estimation, and NN for radar return homogeneity testing 
and clutter bank (transition points) and size estimation. 
It was demonstrated that this detector has better perfor-
mance than conventional CFAR processors, especially 
when detecting targets located near clutter non homoge-
neities (Gálvez et al., 2011). An additional advantage of 
that technique is its efficiency when determining clutter 
transition points, bank size and threshold setting 
(Gálvez et al., 2011). On the other hand, it exhibits dif-
ficulties when discriminating multiple target, since it 
confuses multiple target situations with non homogenei-
ties, diminishing in these cases the probability of detec-
tion considerability.  

The NNCAOS CFAR is developed in this work with 
the purpose of improving the discussed difficulties. NN 
are used with the purpose of making a priori analysis to 
the radar return before an appropriate CFAR detector is 
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applied. NNCAOS CFAR is a composed process, which 
takes advantage of NN as applied to CA CFAR and/or 
OS CFAR concepts.  

B. NNCAOS CFAR description  
Figure 3 depicts the NNCAOS CFAR block diagram. 
Like CANN CFAR, radar return enters to the Maximum 
Likelihood (ML) parameter estimation block where 
clutter parameters are estimated. We choose a relatively 
large number of samples (2M) at the end of the radar re-
turn for this estimation, assuming homogeneity. Then, 
we calculate the threshold multiplier for the CA CFAR 
process, δCA (Pfa,M), according to Gálvez et al. (2011), 
and use its value in the thresholding blocks.  

In the case of the OS CFAR processors, we obtain 
the threshold multiplier δOS (Pfa,M) from Fig. 2 for the 
corresponding kth sample and Pfa, assuming homogene-
ous clutter.  

Two NN blocks, NN1 and NN2, analyze groups of M 
samples (M=40). NN1 block searches for CB and NN2 
looks for MT. As a result, each sample is labeled as 
homogeneous, CB or MT. The algorithm selects a CA 
CFAR in the case of homogeneous radar return, an OS 
CFAR processor with a high kth sample (the OS35. i.e., 
k=35 for the case of a CB, or the OS20 for the case of a 
MT). Then, the most appropriate CFAR processor is ap-
plied to each sample in the CUT, and every CFAR pro-
cessor obtains the threshold T, according to Eq. 4 and 
Eq. 5. Finally, the detection is carried out, a target is de-
clared if the signal amplitude in the CUT is greater than 
the threshold.  

We obtain thus, a robust system, which maintains a 
constant probability of false alarm Pfa even for non ho-
mogeneous returns while at the same time, it achieves a 
higher (or equal) probability of detection Pd than the 
classical systems in most of the cases.  

IV. SIMULATION RESULTS  
In this section, NNCAOS CFAR simulation results are 
shown in order to illustrate and discuss its performance.  

A. NN training  
NN training is performed by means of the 
backpropagation algorithm considering Weibull distrib-
uted radar returns. In the case of NN1 homogeneity test 
block, a network composed by 40 inputs, 40 neurons in 
its hidden layer and only one output was trained for 
20000 epochs by means of 6160 radar returns; 400 sam-
ples of homogeneous radar returns with diverse parame-
ters (α=1; β=2, 1.6, 1.4, 1.33), and 5760 samples with 
non homogeneous returns containing different size and 
parameter clutter banks situated at several positions 
(Gálvez et al., 2011).  

The NN2 multiple target test block, is also a neural 
network. This block with 40 inputs, 40 neurons in its 
hidden layer and only one output, was trained for 15060 
epochs by means of 6655 homogeneous radar returns 
samples (without any target) and 6655 radar returns 
samples containing multiple targets situated at different 
positions within the CFAR window.  

B. Performance Analysis  
NNCAOS CFAR performance is compared to the CA, 
OS20, the OS35 and the CANN CFAR detectors. The re-
sults are illustrated in different figures. In these figures, 
we represent the NNCAOS CFAR with a right line, the 
CA CFAR with asterisks (*), the OS CFAR with a kth 
sample of 20 (OS20) with a plus sign (+), the OS CFAR 
with a kth sample of 35 (OS35) with a triangle (∆) and 
the CANN CFAR with a circle (o). NNCAOS CFAR 
performance is compared to the other detectors for dif-
ferent representative radar return cases.  

 
Figure 3: NNCAOS CFAR structure. 
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Figure 4: Pd for Case 1  

 
Figure 5: CFAR thresholds 

Case1: Homogeneous radar returns  
Pd evaluation for the five detectors was performed using 
Monte Carlo simulations for 1000 Weibull radar returns 
containing 512 samples each.  

Figure 4 depicts the detection performance for one 
of the four targets contained within the radar return. The 
other three targets exhibit very similar results. From the 
Pd curves we can conclude that in this case the perfor-
mance detection is very similar for all CFAR detectors.  

Case 2: Radar returns containing a CB, and different 
isolated targets distributed along it, far away from 
the CB and any other target  

Figure 5 shows the results of applying different CFAR 
processors over a radar return that contains a 20 sample 
CB. In the case of CA CFAR, the same as OS20, have a 
low threshold over the CB producing thus false alarms 
in this sector. OS35 CFAR presents the higher threshold 
levels, especially in the CB area. CANN CFAR misses 
the last target, but it has a good performance when 
avoiding the CB. In the case of NNCAOS CFAR, its 
threshold follows the CA CFAR in the homogeneous 
areas, while at the same time it is raised over the CB, 
pursuing OS35 CFAR threshold. We also observe that 
OS20 CFAR misses the last target and OS35 presents a 
false alarm in the sample number 178. We can infer 

then, a better performance of NNCAOS CFAR that 
takes advantage of the benefits of applying a CA CFAR 
in the homogeneous areas, an OS35 CFAR in the clutter 
areas and a OS20 CFAR in the target areas, as evident 
from Fig. 5.  

Pd evaluation for the five processes was performed 
using Monte Carlo simulations for 1000 Weibull radar 
returns containing 512 samples each. Figure 6 shows the 
detection performance for one of the four targets con-
tained within the radar return (the others exhibit very 
similar results). From Pd curves it is possible to con-
clude that NNCAOS CFAR has a similar performance 
to OS35 CFAR, but superior to the CA, OS20 and CANN 
CFAR when the same constant Pfa is maintained.  

We would expect that the OS20 CFAR processor has a 
better detection performance, than the OS35 CFAR due 
to its lower threshold dependent of the value of k. How-
ever, when the radar return contains CB, CA and OS20 
CFARs present an increment in Pfa especially in the 
clutter edges. For this reason, it was required to incre-
ment the threshold multipliers, 6.5 % for the CA CFAR, 
15 % for the OS20 CFAR and 5% for the CANN CFAR 
in order to maintain the same constant Pfa for the five 
processes (maintaining, in this manner, the same com-
parative rule). On the other hand, NNCAOS CFAR 
maintains a constant Pfa, independently of the radar re-
turn situation (homogeneous or not).  
Case 3: Radar returns containing a CB and a group of 

four targets very near each other, but far away 
from the CB  

Pd evaluation for the five CFAR detectors was per-
formed using Monte Carlo simulations for 1000 Weibull 
radar returns containing 512 samples each.  

Figure 7 shows the detection performance for this 
case. From Pd curves it is possible to conclude that the 
NNCAOS CFAR has the best performance for the four 
targets.  

Considering that in this case the radar return con-
tains CB, CA and OS20 CFARs present an increment in 
Pfa especially in the clutter edges. For this reason, again, 
it was essential to increment the threshold multipliers, 
6.5% for CA CFAR, 15% for OS20 CFAR and 5% for 
 

 
Figure 6: Pd vs SNR for one of the six targets contained within 
the radar return in Case 2. 



N.B. GÁLVEZ, J.E. COUSSEAU, J.L. PASCIARONI, O.E. AGAMENNONI 

 

 349 

 
Figure 7: Pd vs SNR for Case 3  

 
Figure 8: Pd vs SNR for Case 4 
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CANN CFAR to hold the same constant Pfa for the four 
detectors. It is evident that CANN CFAR processor has 
the lowest detection performance because multiple tar-
gets are confused with non homogeities and avoided 
like a clutter bank, especially for the high SNR. On the 
other hand, NNCAOS CFAR maintains a constant Pfa, 
independently of the radar return situation (homogene-
ous or not).  

Case 4: Radar returns containing a CB and a group of 
targets very near each other and the CB  

Pd evaluation for the five CFAR processes was per-
formed using Monte Carlo simulations for 1000 Weibull 
radar returns containing 512 samples each. 

Figure 8 shows the detection performance for this 
case. From Pd curves it is possible to conclude that 
NNCAOS CFAR has the best performance for the first 
and the last targets. In the case of the targets that are 
very near the clutter bank, CANN CFAR has a consid-
erable better performance than the other detectors, espe-
cially for low SNR. This is due to its especial ability to 
detect targets located near clutter non homogeneities 
(Gálvez et al., 2011). In the case of the last target, the 
performance of NNCAOS CFAR and OS35 CFAR are at 
higher than the performance of the other detectors. 
From Fig. 8 it can be noticed that NNCAOS CFAR has 
a high detection performance for all the cases, while the 
other four CFAR detectors performance fluctuate ac-
cording to the target position. Considering that in this 
case the radar return contains CB, CA and OS20 CFAR 
present an increment in the false alarm rate especially in 
the clutter edges. For this reason, it was essential to in-
crement the threshold multipliers, 5.6 % for the CA 
CFAR, 12 % for the OS20 CFAR and 5% for the CANN 
CFAR to hold the same constant Pfa for the four pro-
cesses. On the other hand, NNCAOS CFAR maintains a 
constant Pfa, independently of the radar return situation 
(homogeneous or not).  

V. CONCLUSIONS  
We have studied four possible environment cases to in-
vestigate NNCAOS CFAR performance and compare it 
to other classical processes, CA, OS CFAR and a previ-
ously proposed NN based CANN CFAR detector 
(Gálvez et al., 2011). From Case 1, it is possible to con-
clude that NNCAOS CFAR has a similar performance 
than CA and OS CFAR detector when working with 
homogeneous radar returns. In Case 2 we found that the 
performance of NNCAOS CFAR is very similar to that 
of OS35 CFAR and superior to that of CA, OS20 and 
CANN CFAR (for equal Pfa) when the radar return con-
tains a CB, and different isolated targets. On the other 
hand, NNCAOS CFAR maintains a constant Pfa, inde-
pendently of the radar return situation (homogeneous or 
not). In Cases 3 and 4 NNCAOS CFAR performance 
was studied when the radar return contains a CB and a 
group of four targets very near each other, far away or 

near the CB. We can conclude that NNCAOS CFAR 
has the best performance for some of the targets while at 
the same time it maintains a constant Pfa, independently 
of the radar return situation (homogeneous or non ho-
mogeneous). In summary, the great advantage of 
NNCAOS CFAR detector is that it presents a higher Pd 
performance than CA, OS and CANN CFAR schemes 
for most of the cases while at the same time it maintains 
a constant Pfa even for non homogeneous radar returns. 
This makes it a robust detector, as opposed to the CA, 
OS or CANN CFAR, that increment their false alarm 
rate under non homogeneities.  
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