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WEIGHTED INEQUALITIES FOR GENERALIZED FRACTIONAL

OPERATORS

MARÍA SILVINA RIVEROS

Abstract. In this note we present weighted Coifman type estimates, and two-
weight estimates of strong and weak type for general fractional operators. We
give applications to fractional operators given by an homogeneous function,
and by a Fourier multiplier. The complete proofs of these results appear in
the work [5] done jointly with Ana L. Bernardis and Maŕıa Lorente.

1. Introduction and preliminaries

I would like to dedicate this note in memory of Dr Carlos Segovia. First we will
give some basic definitions and preliminaries needed to state the results. Let us
recall some of the background on Orlicz spaces. (See [24] and [21] to complete this
topic.)

A function A : [0,∞) → [0,∞) is a Young function if it is continuous, convex,
increasing and satisfies A(0) = 0 and A(t) → ∞ as t → ∞.

Given a Young function A, we define the A-mean Luxemburg norm of a function
f on a cube (or a ball) Q in R

n by

||f ||A,Q = inf

{
λ > 0 :

1

|Q|

∫

Q

A

(
|f |

λ

)
≤ 1

}
. (1.1)

It is well known that if A(t) ≤ CB(t) for all t ≥ t0 then ||f ||A,Q ≤ C||f ||B,Q, for
all cubes Q and functions f . Thus, the behavior of A(t) for t ≤ t0 is not important.
If A ≈ B, that is there are constants t0, c1, c2 > 0 such that c1A(t) ≤ B(t) ≤ c2A(t)
for t ≥ t0, the latter estimate implies that ||f ||A,Q ≈ ||f ||B,Q.

Each Young function A has an associated complementary Young function A satis-
fying

t ≤ A−1(t)A
−1

(t) ≤ 2t,
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30 M. S. RIVEROS

for all t > 0. There is a generalization of Hölder’s inequality

1

|Q|

∫

Q

|fg| ≤ ||f ||A,Q||g||A,Q. (1.2)

A further generalization of Hölder’s inequality (see [21]) that will be useful later is
the following: If A,B and C are Young functions and

A−1(t)B−1(t) ≤ C−1(t)

then

‖fg‖C,Q ≤ 2‖f‖A,Q‖g‖B,Q. (1.3)

When A(t) = t we understand that A(t) = 0 if 0 ≤ t ≤ 1 and A(t) = ∞ oth-

erwise. Then A is not a Young function, but LA = L∞ and the latter inequalities
make sense if one of the functions is A or A.

For each locally integrable function f and 0 ≤ α < n, the fractional maximal
operator associated to the Young function A is defined by

Mα,Af(x) = sup
Q∋x

|Q|α/n||f ||A,Q.

For α = 0 we write MA instead of M0,A. When A(t) = t then Mα,A = Mα

is the classical fractional maximal operator. For α = 0 and A(t) = t we obtain
M0,A = M , the Hardy-Littlewood maximal operator. Consider the case α = 0, for

A(t) = tr, A(t) = tr(1 + log+(t))β , A(t) = t(1 + log+(t))k,

the maximal operators associated to these Young functions are:

Mr(f) = M(|f |r)1/r , MLr(log+ L)β (f) and ML(log+ L)k(f) .

If k ≥ 0, k ∈ Z, then ML(log+ L)k is pointwise equivalent to Mk+1, where Mk =
k times︷ ︸︸ ︷

M ◦ ... ◦ M, k ∈ N. It is also easy to check that if k > 0 and r > 1, then

Mf(x) ≤ CML(log+ L)kf(x) ≤ CMrf(x) .

The good weights for M are those in the Ap classes of Muckenhoupt (see [19]
and also [26] and [18] for the one-sided case).

The good weights for the Mα maximal operator are the A(p, q) classes. It is
proved in [20] ( see [1] for the one sided version) that ||(Mαf)w||q ≤ C||fw||p if
and only if w ∈ A(p, q), for 1 < p < q, 1/p− 1/q = α/n, where

(
1

|Q|

∫

|Q|

wq

)1/q (
1

|Q|

∫

|Q|

w−p′

)1/p′

≤ C, A(p, q)

for all cube Q.
Also observe that for the case p = q, w ∈ A(p, p) is equivalent to say that

wp ∈ Ap.
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Let us define a generalization of the Hörmander condition, for a given ker-
nel K. We used the notation: |x| ∼ s for s < |x| ≤ 2 s and ‖f‖A,|x|∼s =
‖f χ{|x|∼s} ‖A,B(0,2 s).

Definition 1.1. Let A be a Young function and let 0 ≤ α < n. The kernel Kα is

said to satisfy the Lα,A-Hörmander type condition, we write Kα ∈ Hα,A, if there

exist c ≥ 1, C > 0 such that for any y ∈ R
n and R > c |y|,

∞∑

m=1

(2m R)n−α ‖Kα(· − y) − Kα(·)‖A,|x|∼2m R ≤ C.

We say that Kα ∈ Hα,∞ if Kα satisfies the previous condition with ‖ · ‖L∞,|x|∼2m R

in place of ‖ · ‖A,|x|∼2m R.

Definition 1.2. The kernel Kα is said to satisfy the H∗
α,∞ condition, if there exist

c ≥ 1, C > 0 such that

|Kα(x − y) − Kα(x)| ≤ C
|y|

|x|n+1−α
, |x| > c|y| .

Observe that when α = 0 we obtain that H0,A = HA defined in [16].
If A(t) = tr, for r ≥ 1, then we write Hα,A = Hα,r. This Hα,r condition

appears implicitly in [12]. On the other hand, since t ≤ C A(t) for t ≥ 1 we have
that Hα,A ⊂ Hα,1. Also, it is easy to see that H∗

α,∞ ⊂ Hα,∞ ⊂ Hα,A.
Suppose that T is an operator given by convolution with a kernel K which

satisfies some regularity condition and suppose that we know some behavior of
T with respect to the Lebesgue’s measure (weak or strong type inequalities for
T ). Sometimes, in order to know how is the behavior of T when we change the
measure, (i.e., when we consider the measure w(x)dx where w is a weight, (0 ≤ w ∈
L1

loc(R
n))) the following inequality is useful (we call it a Coifman type inequality)

∫
|Tf |pw ≤ C

∫
(MT f)pw . (1.4)

Here MT is a maximal operator related to the operator T which is normally easier
to deal with. In general, MT is strongly related with the kernel K and its size is
inverse to the smoothness of K: the rougher the kernel, the bigger the maximal.

For T a Calderón-Zygmund singular integral operator (i.e., K ∈ H∗
∞, see Defi-

nition 1.2, for α = 0) inequality (1.4) holds with MT = M , the Hardy-Littlewood
maximal function, 0 < p < ∞, and w ∈ A∞ (see [8]).

If T is a singular integral operator with less regular kernel, (see [13]) for example
if the kernel K satisfies an Lr-Hörmander condition (Definition 1.1, for A(t) = tr

and α = 0), then inequality (1.4) holds with MT = Mr′, with 1/r + 1/r′ = 1, for
all 0 < p < ∞, and w ∈ A∞ (see [25]).

For a Young function A, the LA-Hörmander condition is introduced in [16],
which generalized in the scale of the Orlicz spaces the Lr-Hörmander condition. In

Rev. Un. Mat. Argentina, Vol 49-2



32 M. S. RIVEROS

[16] the authors showed that, if the kernel K ∈ HA (Definition 1.1, for α = 0), then
inequality (1.4) holds with MT = MA, where A is the complementary function of
A, for all 0 < p < ∞, and w ∈ A∞.

The differential transform operator was studied in [11] and [3]. In [14] it is
proved an inequality of the type (1.4), by showing that the kernel satisfies the

LA-Hörmander condition for A(t) = e(t
1

1+ǫ ) − 1, (ǫ > 0). Therefore, this operator
satisfies inequality (1.4) with the maximal operator MA, where A(t) = t(log(e +
t))1+ǫ (actually they obtain a smaller operator since T is a one-sided operator,
because suppK ⊂ (−∞, 0)).

The Coifman type inequality allows us to obtain, for general linear operators,
two-weight inequalities of the type

∫
|Tf |pw ≤ C

∫
|f |pMT w , (1.5)

for 1 < p < ∞ and in the endpoint case p = 1,

w ({x ∈ R
n : |Tf(x)| > λ}) ≤

C

λ

∫

Rn

|f(x)|MT w(x) dx, (1.6)

for every weight w, with no assumptions on w. The operatorsMT are again suitable
maximal operators related with T and not necessarily the same for inequalities
(1.4), (1.5) and (1.6).

There is a great amount of works that deal with inequalities of the type (1.5) and
(1.6). When T is a Calderón-Zygmund operator (with kernel K ∈ H∗

∞), inequality
(1.5) holds with MT = M [p]+1, where [p] is the integer part of p (see [22]). In
the endpoint case p = 1, inequality (1.6) for Calderón-Zygmund operators hold
with MT = ML (log L)ε , for any ε > 0, where ML (log L)ε is the maximal function

associated to the Young function A(t) = t(1 + log+ t)ε. This result was proved by
Carlos Pérez in [22]. For T a singular integral associated to a kernel K satisfying
a general Hörmander’s condition given by a Young function A, the corresponding
results, that include as particular cases those of C. Pérez, has been proved in [14]
and [15].

In 1974, Muckenhoupt and Wheeden [20] proved inequality (1.4) for T the clas-
sical Riesz potential Iα and MT the fractional maximal function Mα, defined for
0 < α < n and locally integrable function f by

Iαf(x) =

∫

Rn

f(y)

|x − y|n−α
dy.

Observe that using the mean value theorem we can prove that, the kernel of the
fractional integral, Iα, Kα(x) = 1

|x|n−α , belongs to H∗
α,∞. For Iα, inequality (1.5)

holds with MT = Mαp(M
[p]) (this result is also due to Carlos Pérez, see [23]). On
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WEIGHTED INEQUALITIES FOR GENERALIZED FRACTIONAL OPERATORS 33

the other hand, inequality (1.6) for Iα holds with MT = Mα(ML (log L)ε) in [6] (see
also [2]).

There are fractional integrals with less regular kernel than the Riesz transform
(see for example [7], [12], [27], [20], [9], [10]). Suppose that Ω is homogeneous of
degree zero and Ω ∈ Ls(Sn−1), where Sn−1 denotes the sphere of R

n and s > 1.
Define the fractional integral associated to Ω by

TΩ,αf(x) =

∫

Rn

Ω(y/|y|)

|y|n−α
f(x − y) dy.

In [10] inequalities with weights were established for this operator, which general-
ized the corresponding inequalities for Iα given by Muckenhoupt and Wheeden in
[20]. In a more general context and with an aditional condition in Ω, that is, Ω
satisfying the Ls(Sn−1)-Dini smoothness condition, Segovia and Torrea [27], stud-
ied the good weights for this operator and its commutators, using extrapolation
theorems.

In this note we state and briefly sketch the proofs of the corresponding results for
general fractional integrals Tα, 0 < α < n, given by convolution with a kernel Kα

which satisfy a Hα,A condition, for appropriate Young functions A (see Theorems
2.1, 2.3 and 2.5).

From now on, for 0 < α < n, Tα will be a fractional operator bounded from
Lp(dx) to Lq(dx), for all 1 < p < q < ∞ satisfying 1/p − 1/q = α/n.

2. Statements of the Results

Theorem 2.1. Let Tαf = Kα ∗ f be a fractional operator given by a kernel Kα.

Suppose Tα is of weak-type (1, n
n−α ).

(a) If A be a Young function and Kα ∈ Hα,A, then for any 0 < p < ∞ and

w ∈ A∞,∫

Rn

|Tαf(x)|p w(x) dx ≤ C

∫

Rn

Mα,Af(x)pw(x) dx, f ∈ L∞
c . (2.1)

(b) Moreover, if the kernel Kα is supported in (−∞, 0), then for any 0 < p < ∞,

w ∈ A+
∞, it follows that (2.1) holds with M+

α,A
f in place of Mα,Af where

M+

α,A
f(x) = supx<b(b − x)α‖f‖A,(x,b).

Remark 2.2. Observe that we can apply the theorem to Iα and I+
α (respectively)

obtaining the result in [20] and [17], for A(t) = t.

Proof. To prove this Theorem we use the sharp operator of Tαf . Given x ∈ R
n

and a cube Q ∋ x, decompose f = f1 + f2, where f1 = fχ2Q and f2 = f − f1. For
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Tαf1 we use Kolmogorov and that Tα is of weak-type (1, n
n−α ). For the global part

we use that Tα is the convolution with the kernel Kα ∈ HA and the generalized
Hölders inequality. �

Theorem 2.3. Let A be a Young function and 1 < p < ∞. Suppose that there

exist Young functions E, D such that E ∈ Bp′ and E−1(t)F−1(t) ≤ A
−1

(t) with

F(t) = D(tp). Let Tα be a linear operator such that its adjoint T ∗
α satisfies

∫

Rn

|T ∗
αf(x)|q w(x) dx ≤ C

∫

Rn

Mα,Af(x)q w(x) dx, f ∈ L∞
c (2.2)

for all 0 < q < ∞ and w ∈ A∞. Then, for p > 1 and for any weight u,
∫

Rn

|Tαf(x)|p u(x) dx ≤ C

∫

Rn

|f(x)|p Mαp,Du(x) dx, f ∈ L∞
c . (2.3)

Remark 2.4. For the applications below, and since all our operators are of con-
volution type, proving (2.2) for T ∗

α or Tα turns out to be equivalent.

Proof. To prove this Theorem we use duality and apply Theorem 2.1. To do this
we need the fact that the weight (MT w)δ belongs to A1, for all 0 < δ < 1 and any
w. For the maximal operators MT that appears in this proof, has been proved in
[4]. �

Theorem 2.5. Let Tαf = Kα∗f be a fractional operator. Suppose that there exists

δ > 0 such that for any p ∈ (1, 1 + δ), there exists a Young function Dp satisfying
∫

Rn

|Tαf |pu ≤ C

∫

Rn

|f |pMαp,Dp
u, (2.4)

for all weight u. If Kα ∈ Hα,A, then for any weight u,

u ({x ∈ R
n : |Tαf(x)| > λ}) ≤

C

λ

∫

Rn

|f |(Mu + Mα,A u + Mαp,Dp
u) , (2.5)

for all λ > 0.

3. Applications

3.1. Fractional integrals associated to a homogeneous function. Denote
by Sn−1 the unit sphere on R

n. For x 6= 0, we write x′ = x/|x|. Let us consider
Ω ∈ L1(Sn−1). This function can be extended to R

n\{0} as Ω(x) = Ω(x′) (abusing
on the notation we call both functions Ω). Thus Ω is a function homogeneous of

degree 0. Let 0 < α < n, and let A be a Young function such that B(t) = A(t
n−α

n )
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is also a Young function. Let Ω ∈ LA(Sn−1) and satisfying the LA(Sn−1)-Dini
smoothness condition, i.e., ∫ 1

0

̟A(t)
dt

t
< ∞, (3.1)

where

̟A(t) = sup
|y|≤t

‖Ω(· + y) − Ω(·)‖A,Sn−1 .

Consider the fractional operator

TΩ,αf(x) =

∫

Rn

Ω(y)

|y|n−α
f(x − y)dy.

Using Hölder’s inequality with B and B it is easy to see that Ω ∈ LA(Sn−1)

implies Ω ∈ L
n

n−α (Sn−1). Then, by the result in [7], TΩ,α is of weak type (1, n
n−α ),

with respect to the Lebesgue’s measure and is bounded from Lp(dx) to Lq(dx),
whenever 1/p − 1/q = α/n, 1 < p < q < ∞. We can prove (as in [14]) that the

kernel Kα(x) = Ω(x)
|x|n−α satisfies the Hα,A condition. Therefore Theorems 2.1, 2.3

and 2.5 can be applied to the operator TΩ,α.
In the particular case that A(t) = tr with r ≥ n

n−α we get the following:

Theorem 3.1. Let Ω ∈ Lr(Sn−1) be as above and satisfying the Lr-Dini condition.

(a) If 0 < p < ∞ and w ∈ A∞, then
∫

Rn

|TΩ,αf(x)|pw(x)dx ≤ C

∫

Rn

(Mα,r′f)pw(x)dx, f ∈ L∞
c . (3.2)

(b) If 1 < p < r and u a weight, then
∫

Rn

|TΩ,αf(x)|pu(x)dx ≤ C

∫

Rn

|f |pMαp,Dp
u(x)dx, f ∈ L∞

c . (3.3)

(c) If 1 < p < r and u is a weight, then

u{x ∈ R
n : |TΩ,αf(x)| > λ} ≤

C

λ

∫

Rn

|f(x)|(Mr′ u(x) + Mαp,Dp
u(x)) dx. (3.4)

In both cases Dp(t) = t(r/p)′(1 + log+ t)(r/p)′(p−1)+ǫ and ǫ > 0 is small enough.

Proof. We only have to apply the theorems with the following Young functions:

A(t) = tr, E(t) = tp
′

(1 + log+ t)−1−ε, and F(t) = t
rp

r−p (1 + log+ t)(r/p)′(p−1)+ǫ,
where ε > 0 is some small enough number that is related with ǫ > 0. Observe that
in part (c) we obtain Mu+Mα,r′u+Mαp,Dp

u on the right hand side, but it is easy
to see that Mα,r′u ≤ Mr′u + Mαp,Dp

u and Mu ≤ Mr′u. �

For TΩ,α as above, we obtain the following weighted inequality as in [10] (see
also [27]).
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36 M. S. RIVEROS

Corollary 3.2. Suppose that we are under the same hypothesis as in Theorem 3.1.

Let r′ < p < n
α , 1

q = 1
p − α

n and wr′

∈ A(p/r′, q/r′). Then

(∫

Rn

|TΩ,αf(x)|qwq(x)dx

)1/q

≤ C

(∫

Rn

|f |pwp(x)dx

)1/p

.

Proof. First of all observe that wr′

∈ A(p/r′, q/r′) implies wq ∈ A∞. Then by part
(a) of Theorem 3.1

∫

Rn

|TΩ,αf(x)|qwq(x)dx ≤ C

∫

Rn

(Mα,r′f)qwq(x)dx.

Since Mα,r′f(x) =
(
Mαr′ |f |r

′

(x)
)1/r′

and wr′

∈ A(p/r′, q/r′) (see [20]) we have

that
∫

Rn

(Mα,r′f)qwq =

∫

Rn

(
Mαr′ |f |r

′

)q/r′

(wr′

)q/r′

≤ C

(∫

Rn

(
|f |r

′

)p/r′

(wr′

)p/r′

)q/p

.

�

3.2. Fractional integrals associated to a multiplier. Let 0 < α < n. Given a
function m defined in R

n we consider the multiplier operator Tα defined a priori

for functions f in the Schwartz class by T̂αf(ξ) = m(ξ) f̂(ξ). Given 1 < s ≤ 2
and 0 ≤ l ∈ N we say that m ∈ M(s, l, α) if there exists a constant B such that
|m(x)| ≤ B|x|−α and

sup
R>0

R|β|+α ‖Dβm‖Ls,|ξ|∼R < +∞, for all |β| ≤ l.

In [12], Kurtz proved that if n/s < l ≤ n and m ∈ M(s, l, α) then Tα is bounded
from Lp(dx) to Lq(dx), for 1 < p < n/α and 1/q = 1/p− α/n. If Kα is the kernel
of Tα, he proved that Kα ∈ Hα,r for all 1 < r < (n/l)′ and, as a consequence,
he obtained the following Coifman type inequality: for all ε > 0, 0 < p < ∞ and
w ∈ A∞, ∫

Rn

|Tαf(x)|p w(x) dx ≤ C

∫

Rn

Mα,n/l+εf(x)p w(x) dx. (3.5)

Now we can apply Theorems 2.3 and 2.5 to this operator.

Theorem 3.3. If 1 < p < r < (n/l)′ and u a weight, then
∫

Rn

|Tαf(x)|pu(x)dx ≤ C

∫

Rn

|f |pMαp,Dp
u(x)dx, f ∈ L∞

c . (3.6)

and

u{x ∈ R
n : |Tαf(x)| > λ} ≤

C

λ

∫

Rn

|f(x)|(Mr′ u(x) + Mαp,Dp
u(x)) dx, (3.7)

where Dp(t) = t(r/p)′(1 + log+ t)(r/p)′(p−1)+ǫ and ǫ > 0 is small enough.
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Observe that as ǫ is at our choice, we can write Dp(t) = t(r/p)′(1+log+ t)(r/p)′(p−1)+ǫ

. t(r̃/p)′ , for all 1 < p < r̃ < (n/l)′. Therefore, we can write Dp(t) = t(r/p)′ in (3.6)
and (3.7).
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