SciELO - Scientific Electronic Library Online

 
vol.69 issue4Textural and compositional heterogeneities in pyroclastic products from 1960 Cordón Caulle eruption (40º30'S, 72º10'W)Hallazgo de sepiolita en Serpentinitas, Mina árbol seco, provincia de Córdoba author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista de la Asociación Geológica Argentina

Print version ISSN 0004-4822

Abstract

SRUOGA, Patricia et al. Volcanological and geochemical evolution and hazard assessment of the Diamante Caldera-Maipo Volcano Complex (34°10'S, 69º50'W). Rev. Asoc. Geol. Argent. [online]. 2012, vol.69, n.4, pp.508-530. ISSN 0004-4822.

The Caldera Diamante-Maipo volcanic complex (34°10' S, 69º50' W) is located at the northern end of the South Volcanic Zone. The eruptive activity started 450/150 ka ago and its historic record remains uncertain. At present, neither fumarolic activity nor hydrothermal manifestations are detected. Two main stages are distinguished in the evolution of the volcanic complex: 1) "Diamante stage" corresponds to the emplacement of large-volume ignimbrites associated to a 20 by 16 km in diameter collapse caldera and 2) the "Maipo stage" represents andesite-dacite stratocone-building lavas and pyroclastics, a ring-fault dome and parasitic cones emplaced during the last 100 ka of the complex lifetime (4 pre-glacial events: 86 ± 10 ka / 88 ± 7 ka, 75 ± 16 ka, 45 ± 14 ka, 28 ± 17 ka and 3 post-glacial events <14 ka). Scoria flows and fall deposits near the summit are assigned to the recent explosive record. The last eruption tentatively occurred in 1912. The volcanics define a high-K, calc-alkaline suite ranging in silica from 54% to 74%. The Maipo series encompasses two pyroxene with minor olivine andesites and two pyroxene and hornblende dacites. Magmatic differentiation is strongly controlled by fractional crystallization. However, periodic magma mixing and crustal assimilation should have been significant in producing cyclic chemical variations. P-T° calculations indicate that andesitic and dacitic magmas have equilibrated at a depth of ~12-22 km and ~4-15 km, respectively. On the case of an eventual reactivation of the volcanic complex, two possible scenarios are discussed.

Keywords : Active volcano; Andes; Geochronology; Geochemistry.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )