SciELO - Scientific Electronic Library Online

 
vol.33 issue2METHODOLOGY OF ANALYSIS THROUGH THE USE OF SATELLITE INFORMA-TION ON THE STRUCTURE AND MORPHOLOGY OF THE NORTHERN SECTOR OF THE ACHALA BATHOLITH AND ITS METAMORPHIC HOST ROCKS, SIERRAS PAMPEANAS OF CÓRDOBA.PREDICTIBILITY OF GEOMORPHOLOGICAL RISKS IN THE NECAXA HY-DROELECTRIC SYSTEM, SIERRA NORTE DE PUEBLA, MEXICO. author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Serie correlación geológica

On-line version ISSN 1666-9479

Abstract

CISNEROS, Héctor et al. Determination of physical variables of the mendocino piedmont through the use of remote sensing tools in relation to geological risks. Ser. correl. geol. [online]. 2017, vol.33, n.2, pp.1-10. ISSN 1666-9479.

The metropolitan area of Mendoza, in periandean sectors, tends to accommodate and sustain geological processes of internal and external order related to seismic and alluvial events, among others. Because of the growing and uncontrolled urbanization especially onto capital city and metropolitan area, much of the population is moving into areas of significant slope, generating phenomena related with summer rainfall events activating landslides. These processes together with other of lower order, but not less important, expose thousands of people to geological risk. The development of mapping detail to establish mitigation plans, zoning and adequate contingency in the piedmont area western Mendoza are presented here. Studies with the base of OLI, ETM+ and TM landsat program information were made, in order to perform, multitemporal studies to determine urban growth rates. Simultaneously, digital pro-cessing was performed to establish stratigraphic, topographic differences, orientation, attitude and aniso-tropies because of structural deformations that could make physical parameters to determine geological and hydrological active hazard areas. Supervised classification (maximum likelihood), decision tree (using digital elevation models from own data), density slice; principal components and decorrelation strecht were included. The results provided a detailed cartographic output raster, complemented by field work, that allowed summarize information to successfully establish zones of seismic and hydrological poten-tial hazard. The resulting graphs are presented in this opportunity.

Keywords : Remote Sensing. OLI, ETM+ Images. Geological risk..

        · abstract in Spanish     · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License