SciELO - Scientific Electronic Library Online

 
vol.29 issue1Effect of different fertilization strategies on pecan growth parameters under two high density plantation frames author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Ciencia del suelo

On-line version ISSN 1850-2067

Abstract

VARELA, María Florencia; FERNANDEZ, Patricia Lilia; RUBIO, Gerardo  and  TABOADA, Miguel Ángel. Cover crops: effects on soil macroporosity and soil structural stability in a silt loam soil. Cienc. suelo [online]. 2011, vol.29, n.1, pp.99-106. ISSN 1850-2067.

No- till (NT) silt loam topsoils have often a low and unstable structural porosity. The objective of this study was to determine the capability of cover crops (CC) of improving the structural porosity and stability of silt loam soils under NT. Greenhouse and field experiments were carried out on a silt loam soil (Typic Argiudoll) with and without CC (oat, Avena sativa L.) in crop sequences with soybean (Glicine max L. Merr.). Soil bulk density (DA) and aggregate instability index (IE) were measured after the CC in both experiments. In the greenhouse experiment, soil pore size distribution (DTP) was measured. The use of CC did not change DA, but soil IE was significantly lower in crop sequences with CC (P < 0.05) both under field and greenhouse conditions. Stability increases were likely due to the effect of CC residues and root mass. No differences in DTP were found between treatments, although a significant effect of sampling date was observed (P<0.05). Changes in DTP were due to significant increases in mesopore (517.5%) and macropore (52.7%) volumes. Such changes occurred in all the treatments, probably due to the soil wetting-drying cycles. The results found in this study agree with other studies carried out on silt loams in the same region, which also found a lack of effect of tillage practices on soil porosity.. A low soil structural resilience of silt loam soils in the short-term is corroborated.

Keywords : Soil physical properties; Structural porosity; Soil aggregation; Oats; Soybean monoculture.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License