SciELO - Scientific Electronic Library Online

 
 issue40Health monitoring of smart vehicle occupants: A review author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista de Ciencia y Tecnología

On-line version ISSN 1851-7587

Rev. cienc. tecnol.  no.40 Posadas Dec. 2023

http://dx.doi.org/10.36995/j.recyt.2023.40.010 

Articulo

Biological activity of Lemongrass (Cymbopogon citratus) and its applications in industry

Actividad biológica de la Hierba Luisa (Cymbopogon citratus) y sus aplicaciones en la industria

Miguel, Enríquez1 

Luis, Arboleda2 

Ahmed, El Salous3 

Silvia, Torres4 

1 Faculty of Earth Sciences, Amazon State University, Puyo-Ecuador.

2 Faculty of Livestock Sciences, Higher Polytechnic School of Chimborazo. Riobamba-Ecuador.

3 Agrarian University of Ecuador, Guayaquil-Ecuador.

4 Faculty of Engineering, National University of Chimborazo. Riobamba-Ecuador. * E-mail: menriquez@uea.edu.ec

Abstract

In the investigation, an analysis was carried out on the importance of the biological activity of Lemongrass (Cymbopogon citratus), its benefits and application in the food and non-food industry. The objective was to identify, analyze, organize and compare the information on the bioactive components of the plant species in the industry. The method used is exploratory with a documentary approach of secondary order, since a detailed search of bibliographic information of documents obtained in scientific bases that support the work was carried out. 8 bioactive components and 11 constituents of essential oils were determined, in relation to their use in industry, 2 applications were determined: in food used in beverages (energizing, moisturizing, functional) and as a food additive (antioxidants, preservatives and flavorings) and in the non-food area in the agricultural area (insecticide, fungicides and herbicide), in the cosmetics area (perfume, deodorants and shampoos) and in the pharmacological area (antibacterial and antifungal). The Cympogon citratus for its biological components has been used in the industry during the last years, in the non-food field. Myrcene, citronella, citronellol and geraniol are the components that are most used in the non-food area and citral is the bioactive that is used in the food part.

Keywords: Chemical composition; Agricultural; Cosmetics; Pharmaceutical; Food additive

Resumen

En la investigación se realizó un análisis sobre la importancia de la actividad biológica de la Hierba Luisa (Cymbopogon citratus), sus beneficios y aplicación en la industria alimentaria y no alimentaria. El objetivo fue identificar, analizar, organizar y comparar la información sobre los componentes bioactivos de la especie vegetal en la industria. El método empleado es exploratorio con enfoque documental de orden secundario, ya que se realizó una búsqueda minuciosa de información bibliográfica de documentos obtenidos en bases científicas que sustentan el trabajo.Se determinó 8 componentes bioactivos y 11 constituyentes de los aceites esenciales, en relación a la utilización en la industria se determinaron 2 aplicaciones: en lo alimentario utilizado en bebidas (energizantes, hidratantes, funcionales) y como aditivo alimentario (antioxidantes, conservantes y aromatizantes) y en lo no alimentario en el área agrícola (insecticida, fungicidas y herbicida), en el área de cosméticos (perfumería, desodorantes y shampoos) y en el área farmacológica ( antibacteriales y antifungicas). El Cympogon citratus por sus componentes biológicos ha sido aprovechado en la industria durante los últimos años, en el campo no alimentario. El mirceno, citronela, citronelol y geraniol son los componentes que más se aprovechan en el área no alimentaria y el citrales el bioactivo que se aprovecha en la parte alimentaria.

Palabras claves: Composición química; Agrícola; Cosméticos; Farmacéutica; Aditivo alimentario

INTRODUCTION

The Food and Agriculture Organization of the United Nations (FAO), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), as international agencies, mention the importance of functional foods (Intriago, 2019) because they contain nutritional characteristics, which help reduce the risk of the presence of diseases; therefore, they possess physiologically active components of plant origin that have pharmacological, therapeutic, antibacterial effects that promote health, physical capacity and mental state of the person (Asgary et al., 2018).

We are currently experiencing profound political and social changes related to clear modifications in people's conduct and behaviour. We are even changing our eating habits, leaving aside the traditional diet, rich in cereals and legumes, to adopt a new culture such as fast food, with high energy value, but deficient in some essential nutrients (Ramírez et al., 2003). For this reason, society is looking for a healthy diet, so science is developing products fortified with a component or bioactive ingredient that provides properties to the body (Britez & Romero, 2019).

In addition, a common product differs from a functional food by having a contaminant-free protein source (Di Cerbo et al., 2017). There are also factors that contribute to food choices, such as familiarity, tastes, convenience, price, knowledge of the food and consumption trends (Britez & Romero, 2019). For this reason, marketing is growing and becoming more varied (Salama & Bustos, 2018).

Following (Totosaus, 2011), foods are evaluated according to three functions: their nutritional value, i.e. their role in providing standard nutritional components; two, based on their sensory properties and a third function is the role of food components in preventing diseases by modulating the physiological system. At the same time (Heredia, 2016), deduces that the functions and health objectives that have been targeted by research in the area of functional foods are: growth and development, metabolism or nutrient utilisation. (Aguilera et al., 2008) considers that some foods can play a beneficial role in addition to their own as suppliers of energy and nutrients.

The International Lile Science lnstitute (ILSI) certifies that a food is functional if it can be successfully demonstrated to have a beneficial effect on one or more specific functions. For this reason, the idea was developed in Japan during the 1980s as a necessity to reduce the high cost of health insurance (Chasquibol et al., 2003). (Hurtado & Zamora, 2015) argue that functional foods are intended to strengthen, improve and stabilise metabolic activity.

Phytochemical properties of functional foods of plant origin

Polyphenols

They originate mainly from plants, which synthesise them in large quantities, and are a product of secondary metabolism. Some are indispensable for plant physiological functions (Pregowska et al., 2012). It is a heterogeneous set of molecules with antioxidant activity that includes acid phenols and flavonoids, characterised by having an aromatic ring (Drago et al., 2006). (Pregowska et al., 2012) mentions that phenolic compounds are a large group of non-energetic substances that are present in plant foods. For this reason, a diet rich in polyphenols helps to stabilise health and reduce the incidence of diseases.

Phytoestrogens

They are a group of non-steroidal compounds that are made up of isoflavones, coumestanes, lignans and flavonoids, and are abundant in legumes, fruits, herbs, grasses and legumes (Cortés-Sánchez et al., 2016). They are of great importance because they have a high biological activity due to their properties of modulating different valuable cellular processes such as cell cycle and cell death (Torres et al., 2017). Furthermore, the effect of phytoestrogens depends exclusively on the type and quantity present in the plant species consumed (R. S. Márquez, 2012).

Vegetable lipids

Vegetable lipids are the oils that we consume in our diet, they are in liquid form, standing out for their chemical structure as monounsaturated and polyunsaturated acids (L. García, 2009). For this reason, they play an essential role in nutrition, because they are an important source of non-protein energy and fat-soluble vitamins, thus generating a saving of food proteins (García et al., 2010).

Would the use of bioactive elements from lemongrasss (Cymbopogon citratus) bring benefits to the industry?

Plants produce a wide variety of secondary metabolites or phytochemicals, many of which have protective functions (Bermúdez-Vásquez et al., 2019b). Besides(Oliveira & Santos, 2021), state that C. citratus is widely used in industry for the properties it provides.This article aims to identify the biological compounds of lemongrass and their application in the food and non-food industry.

METHODOLOGY

Location

The research was carried out at the Amazon State University, located in the city of Puyo, Pastaza province; Km. 2½, on the road from Puyo to Tena (Paso Lateral).

Method

The method used is exploratory of secondary order, since a thorough search of bibliographic information of documents obtained in scientific databases such as Scopus, Springer, Scielo, Google Scholar, Researchgate, undergraduate, master's and doctoral theses was carried out. In order to meet the research objectives, a critical reading of the main selected bibliographic documents was carried out, which were subsequently classified and separated according to the information supporting the work.

Type of research

Table 1: Type of research.

Descriptive

Documentary

According to (Guevara et al., 2020) it aims to describe some fundamental characteristics of homogeneous sets of phenomena, it uses systematic criteria that allow to establish the structure or behaviour of the phenomena under study, providing systematic and comparable information. The data collection methods used are observation, survey and case study.

(Falcón. & Serpa, 2021) argue that it is a set of operations aimed at representing a document and its content in a form different from its original form, in order to enable its subsequent retrieval and identification, and whose purpose lies in the transformation of the original documents into secondary ones to enable both their retrieval and their dissemination, including both a physical description of the document and an analysis of its content.

Prepared by Alvarado & Poveda (2022).

This literature review has a non-experimental documentary approach, adapting to a collection of information through an analytical reading of documents and bibliographic materials related to the biological activity of lemongrass (Cymbopogon citratus) in industry, with the aim of obtaining background information on studies conducted in order to deepen and investigate the problem.

The study is qualitative with a descriptive scope, because its purpose is to explain the function of lemongrass and its contributions to the industry.

RESULTS AND DISCUSSION

Origin and distribution of Cymbopogon citratus

This species originated in Southeast Asia and, like the rest of the species of the genus Cymbopogon, is distributed in tropical and subtropical regions of the world (Álvarez & Yepes, 2014). Known by the common names 'lemongrass', 'caña santa', 'lemongrass', 'lemon tea', 'citronella' and others (Rojas et al., 2012). It grows up to 2 metres tall, with aromatic leaves between 30 and 100 centimetres, widely distributed and used around the world as a decoction and infusion (Wannissorn et al., 2005).

Chemical composition

The volatile fraction is a prominent characteristic of lemongrass (Bandoni, 2003). Its essential oil yield fluctuates between 0.2 and 1.0 % depending on several factors such as the plant species, its origin, geobotanical conditions and cultivation, as well as extraction methods, duration and temperature (Jaramillo et al., 2017). The main and most abundant biologically active component is citral, a mixture of two monoterpene, stereoisomeric aldehydes from geranial and neral (Lopez, 2022). The bioactive components of lemongrass are listed in table 2.

Table 2: Bioactive components of lemongrass.

Phytonutrients

Mineral content

Vitamins

Flavonoids

Sodium

Vitamin A

Alkaloids

Potassium

Vitamin C

Vitamins

Calcium

Vitamin E

Tannins

Iron

Folate

Phenols

Phosphorus

Thiamine

Saponins

Selenium

Niacin

Essential Oils

Zinc

Pyrodixin

Steroids

Magnesium

Rivoflabin

Constituents of essential oils

Citral

α-Terpineol

β-Mircene

Burneol

β-O-Cimene

Allo-o-cimene

α-Pinene oxide

Myrcenol

t-Muurolol

Linalool

1-Octin-3-ol

trans-chrysanthemum

Citronellal

Neral

3-Undencyne

Nerol

trans-(−)-Carveol

Geraniol

Geranial

Nerol

Citronellol

Methyl-n-nonylketone

Dextro-carvonene

Geranic acid

α-Bergamotene

Isolongifolene

Muurolene

α-Farnesene

α-Elemol

α-Gurjunene

Viridiflorol

Humulene

α-Selinene

Prepared by: Enriquez et al., (2023).

Source: (Ekpenyong et al., 2014) & (Ayay & Infante, 2018)

Applications in industry

According to (Aćimović et al., 2020) C. citratus is considered to be of great interest in the industry because it has a rich source of bioactive compounds with a wide range of applications such as food and non-food as detailed in table 3.

Table 3: Applications in industry.

Areas

Application

Food

Beverages, Food additives

Non-food

Agricultural, cosmetics, pharmaceutical.

Prepared by: Enriquez et al., (2023).

Food industry

C. citratus industrially, (Table 4) serves as an additive, flavouring, preservative in beverages and food (Oladeji et al., 2019).

Table 4: Applications of lemongrass extract in the food industry.

Application

Type

Benefit

Reference

Beverages

Energising

1Because of its citral content, it provides nutritional values and has the capacity to 2contain antioxidant agents, which represent health benefits.

1(G. M. Silva, 2016)

2(Castro, et al., 2020)

Hydrating

Consumed as beverages with a pleasant aroma and taste because it contributes to the good functioning of the organism.

(Campo & Cunalata, 2020)

Functional

Improves the availability of nutrients due to its phenolic content.

(Ramos, 2016)

Food additives

Antioxidant

1 Due to its high content of phenolic compounds with high reducing power 2when applied in food it is considered safe and natural.

1( Castillo et al., 2018)

2(Majewska et al., 2019)

Preservative

Lemongrass extract is an oily, volatile liquid with citral as its main constituent, which is responsible for antioxidant and fungitoxic activity.

(Silva et al., 2019)

Flavourings

For the flavouring of oils, dressings and vinegars; likewise in confectionery it is used to give better flavour and aromas to cakes, creams, among others due to the presence of citral.

(Criollo, 2019)

Prepared by: Enriquez et al., (2023).

According to Silva (2016), energy drinks contain citral to provide health benefits, and Ramirez et al. (2021) states that they are non-alcoholic because they are composed of plant extracts that include vitamins, minerals, etc. (Salazar, 2006). While Perez (2015)mentions that hydrating drinks have natural flavouring in order to replenish the energy and electrolytes lost by the human body during physical activity, (Salazar, 2006) argues that consumption is due to its pleasant taste ensuring proper hydration. Cucaita (2017), adds that Cymbopogon citratus functional beverages have bioactive components that reduce the risk of disease and Yilmaz et al.(2019), states that it contributes to nutritional well-being due to its high consumption rate. And when making beverages, it becomes important for its functional properties that benefit human mental or bodily health (Enriquez et al., 2023).

Non-food industry

Society has implemented the functionality of biologically active compounds that have applications in agricultural and cosmetic areas (Table 5) (Gamero et al., 2021).

Table 5: Applications in the non-food industry.

Application

Type

Benefit

Reference

Agricultural

Insecticide

Lemongrass extract repels insects like mosquitoes, aphids, so it contains citral and also myrcene, citronella, citronellol and geraniol.

(Kaur, 2021)

It kills insects and also keeps them away.

(Narayan & Maheshwari, 2017)

Fungicide

The high fungicidal power is due to the citral component, which inhibits the germination and mycelial development of the fungus.

(Rodríguez et al., 2018)

Herbicide

Marketed as an organic herbicide, but its potential use for weed control is due to its main compound citral.

(García, 2013)

Cosmetics

Cosmetics

Perfumery Citral is mainly used in perfumery.

(Duran et al., 2021)

It contains less myrcene and therefore has a longer shelf life.

(Narayan & Maheshwari, 2017)

Deodorant

Due to its antibacterial and cleansing properties that help fight unpleasant body odour and prevent fungal and bacterial infections.

(Narayan & Maheshwari, 2017)

Rich in antioxidant compounds, for skin care.

(Kim et al., 2022)

Shampoo

Due to its repellent effects on lice.

(Narayan & Maheshwari, 2017)

It is also used to reduce dandruff through its antimicrobial and anti-inflammatory properties.

(Tabassum, 2020)

Elaborated by: Enriquez et al., (2023).

Kaur, (2021) indicates that lemongrass oil has the ability to repel insects that are present in the environment. On the other hand, Tacoaman, (2018) suggests that being a natural producto, it helps to stimulate the metabolic processes of crops to strengthen them and protect them from microorganisms. Also, Rodriguez et al (2018) argues that in their study on the antifungal activit.y of C. citratus the main component is (citral), which has the characteristic of inhibiting the growth of moulds and fungi. In addition, Vargas, (2013) considers that being an organic input, it contributes to the defence functions of plants, influencing as a tonic to counteract adverse conditions. Montero et al., (2017) underlines that herbicides provide weed control in the field because they destroy the cell membrane and cause the desiccation of invasive plants.

Duran et al., (2021) emphasise that in the production of perfumes, the active ingredients enhance their aroma. Kim et al. (2022) also states that deodorants contain antioxidants that eliminate body odour and have a protective capacity on the skin. Similarly, Tabassum, (2020) defines in his study on lemongrass shampoo that it has effects on the presence of dandruff on the scalp. The use of C. citratus in the non-food area has non-toxic effects due to its natural active ingredients and has a friendly impact on the environment.

Pharmaceutical industry

It plays a major role in healthcare systems worldwide (Márquez, 2019). The practice of herbal medicine is based on the therapeutic use (Table 6) of plants as a medicinal supplement. It uses their extracts in different formulations (Gallegos, 2016).

Table 6: Pharmacological activities.

Pharmacological activity

Bioactive Component

Reference

Antibacterial activity

These effects are attributed to neral (ÿ-citral), cineol, ÿ-pinene, geraniol p-cymene, (ÿ-citral) ÿ-and terpineol, camphene and limonene help kill bacteria.

(Ekpenyong et al., 2015)

They are attributed to three specific compounds: α-citral, myrcene and β-citral which individually act on gram-negative and gram-positive bacteria.

(Bermúdez et al., 2019)

This activity is due to geranial and neral.

(Giler, 2018)

Volatile components, terpenes such as geraniol and citronellol, are attributed to the antibacterial effect.

(Morillo & Ibarra, 2018)

Ethanolic extracts of lemongrass leaves, especially flavonoids and tannins found in the extract, are responsible for the activity.

(López, 2022)

Antifungal activity

Main constituent is citral because it causes the death of the fungus.

(Coello, 2022)

They can be attributed to the presence of several constituents, including citral, ÿ-myrcene, linalool and geraniol possessing inhibitory effects.

(Ekpenyong et al., 2015)

Two main constituents: geranial (42.2%) and neral (31.5%).

(Boukhatem et al., 2014)

Series of constituents, including Citral, β-myrcene, linalool and geraniol, have been proven to have antifungal effects.

(López, 2022)

Antioxidant activity

Among which are isoorientin 2-V-rhamnoside, isoorientia and swertiajaponin prevent cell damage.

(Alvis et al., 2012)

Reported methanol, aqueous ethanol, flavonoids are free radical scavengers.

(Julieth & Cetina, 2018)

Lemongrass contains flavonoids that have antioxidant properties.

(Giler, 2018)

Main compounds are citral, β-myrcene and geranium.

(Duran et all, 2021)

The role of phenolic acid and flavonoids present in lemongrass are responsible for the antioxidant activity.

(López, 2022)

Elaborated by: Enriquez et al, (2023).

Also, Ekpenyong et al. (2015) evaluated the antifungal activity resulting in the destruction of phytopathogens present in the environment. In addition, Giler, (2018) describes that flavonoids contain antioxidant properties that contribute to the reduction of cardiovascular diseases. Cymbopogon citratus is used in the pharmaceutical industry to produce medicines and cleaning products, and research has shown its effectiveness against diseases, fungi and bacteria. According to (Chambal, 2015), lemongrass essential oil has an inhibitory capacity against Candida albicans strains, suggesting the potential value of this element for this skin treatment.

Furthermore, Kishore et al. (1993) carried out studies on ointments and creams containing this element and found it to be effective in its use, taking into account the susceptibility of Candida spp. to antifungals. According to (Enriquez et al., 2018), in his study on Guaviduca indicates that the antioxidant activity of a plant species is the expression of the different phenolic elements that are being used to neutralise reactive oxygen species.

CONCLUSION

Forty-six scientific articles were analysed, of which 60% indicate the biological power and use of lemongrass extract in the food and non-food industry. After the literature review, the antibacterial and significant antifungal effect on Gram (+) and Gram (-) strains was identified, and as it is a promising source of antimicrobial chemical compounds, it was used in the food and non-food line. In the non-food field, myrcene, citronella, citronellal, citronellol and geraniol are the components that are most used, and in the food industry, the bioactive citral is used to give functionality to products, lower costs and avoid toxicity.The use of lemongrass extract plays an important role in the local and global industry due to its biological components that substitute, preserve and improve the final products offered in the food and non-food market.

Received: 31/10/2022

Accepted: 26/04/2023

BIBLIOGRFÍA

Aćimović, M., Kiprovski, B., & Gvozdenac, S. (2020). Application of Cymbopogon citratus in Agro-Food Industry. Fiver.Ifvcns.Rs, 3(3), 423-436. http://fiver.ifvcns.rs/handle/123456789/2220 [ Links ]

Aguilera Garca, C. M., Barberá Mateos, J. M., Esperanza Díaz, L., Duarte de Prato, A., Gálvez Peralta, J., Gil Hernández, Á., Gómez, S., González-Gross, M., Granado Lorencio, F., Guarner, F., Marcos, A., Martínez Augustin, O., Nova, E., Olmedilla Alonso, B., Pujol-Amat, P., Ramos, E., Romeo, J., Tobal, F. M., Ramón Vidal, D., … Zarzuelo Zurita, A. (2008). Alimentos funcionales Aproximación a una nueva alimentación. In Dirección General de Salud Pública y Alimentación (Vol. 53, Issue 9). file:///C:/Users/Giovanna M/Desktop/archivos para contexto/BVCM009703.pdf [ Links ]

Álvarez Morales, L., & Salazar Yepes, M. (2014). Caracterización morfológica de las Royas (pucciniales) que afectan el limoncillo (Cymbopogon citratus (DC.) Stapf) en Colombia. Bioagro, 26(3), 171-176. [ Links ]

Alvis, A., Martínez, W., & Arrazola, G. (2012). Obtención de extractos hidro-alcohólicos de limoncillo (Cymbopogon citratus) como antioxidante natural. Informacion Tecnologica, 23(2), 3-10. https://doi.org/10.4067/S0718-07642012000200002 [ Links ]

Asgary, S., Rastqar, A., & Keshvari, M. (2018). Functional Food and Cardiovascular Disease Prevention and Treatment: A Review. Journal of the American College of Nutrition, 37(5), 429-455. https://doi.org/10.1080/07315724.2017.1410867 [ Links ]

Ayay, Y., & Infante, L. (2018). Actividad antibacteriana del colutorio a base del aceite esencial de las hojas de Cymbopogon citratus “Hierba Luisa” en cepas aisladas de Streptococcus mutans de niños de la I.E.82003 “Nuestra S eñora de la Merced” Cajamarca 2018. In Universidad Privada Antonio Guillermo Urrelo. http://repositorio.upagu.edu.pe/handle/UPAGU/88 [ Links ]

Bandoni, A. L. (2003). Hierbaluisa Aloysia citriodora Palau. Revista de Fitoterapia, 3(1), 19-25. [ Links ]

Bermúdez-Vásquez, M. J., Granados-Chinchilla, F., & Molina, A. (2019a). Chemical composition and antimicrobial activity of the essential oil of Psidium guajava and Cymbopogon citratus. Agronomy Mesoamerican, 30(1), 147-163. https://doi.org/10.15517/am.v30i1.33758 [ Links ]

Bermúdez-Vásquez, M. J., Granados-Chinchilla, F., & Molina, A. (2019b). Composición química y actividad antimicrobiana del aceite esencial de Psidium guajava y Cymbopogon citratus. Agronomía Mesoamericana, 147-163. https://doi.org/10.15517/am.v30i1.33758 [ Links ]

Boukhatem, M. N., Ferhat, M. A., Kameli, A., Saidi, F., & Kebir, H. T. (2014). Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan Journal of Medicine, 9(1). https://doi.org/10.3402/ljm.v9.25431 [ Links ]

Britez, M. G., & Romero, M. C. (2019). Conocimiento y consumo de alimentos funcionales en la comunidad académica de la Universidad Nacional del Chaco Austral. Ciencia, Docencia y Tecnología, 30(59 nov-abr). https://doi.org/10.33255/3059/686 [ Links ]

Campo, M., & Cunalata, G. (2020). Infusiones de Moringa oleifera (moringa) combinada con Cymbopogon citratus (hierba luisa) y Lippia alba (mastranto) Infusions of Moringa oleifera (moringa) combined with Cymbopogon citratus ( lemon grass ) and Lippia alba ( mastranto ). Unemi, 13, 118. file:///C:/Users/Usuario iTC/Downloads/1112-Texto del artículo-4173-1-10-20200914.pdf [ Links ]

Castro C., J. D., Vera R., L. R., Cedeño P., C. A., & Dueñas R., A. A. (2020). Bebida funcional a base de pitahaya (Hylocereus undatus) y extractos de hierba luisa (Cymbopogon citratus) y albahaca (Ocimum tenuiflorum). Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, ve2020(2), 90-95. https://doi.org/10.22209/rt.ve2020n2a13 [ Links ]

Chambal, L. (2015). Efecto antifúngico del aceite esencial del Origanum vulgare (orégano) y Cymbopogon citratus (hierba luisa), sobre cepas de Cándida albicans en comparación con la nistatina estudio invitro. 77. [ Links ]

Chasquibol, N., Lengua, L., Delmás, I., Rivera, D., Bazán, D., Aguirre, R., & Bravo, M. (2003). Alimentos funcionales o fitoquímicos, clasificación e importancia. Revista Peruana de Química e Ingeniería Química, 6(2), 9-20. [ Links ]

Coello-cedeño, D. (2022). Actividad Antifúngica del Aceite Esencial de Hierba Luisa ( Cymbopogon citratus ) Frente a Candida spp . Divulgación Científica, March. https://doi.org/10.13140/RG.2.2.11450.06081 [ Links ]

Cortés-Sánchez, A. D. J., León-Sánchez, J. R., Jiménez-González, F. J., Díaz-Ramírez, M., & Villanueva-Carvajal, A. (2016). Alimentos funcionales, alfalfa y fitoestrógenos. Revista Mutis, 6(1), 28. https://doi.org/10.21789/22561498.1110 [ Links ]

Criollo, E. A. A. (2019). Extracción de seis aceites esenciales: “hierba luisa, limón Meyer, menta piperita, flor de naranjo, Pelargonium graveolens y tomillo” por arrastre de vapor y su aplicación en la gastronomía. In Αγαη (Vol. 8, Issue 5). [ Links ]

da Silva, T. K. R., Hitz, D., Maia, A. J., Novello, D., Schwarz, K., & Jardinetti, V. D. A. (2019). Use of Cymbopogon citratus essential oils for preservation of fragaria ananassa after conventional harvesting. Revista Cubana de Plantas Medicinales, 24(2), 1-11. [ Links ]

Di Cerbo, A., Pezzuto, F., Guidetti, G., & Canello, S. (2017). Functional Pet Foods. Superfood and Functional Food - An Overview of Their Processing and Utilization. https://doi.org/10.5772/65391 [ Links ]

Drago, M., Lopéz, M., & Sainz, T. (2006). Componentes bioactivos de alimentos funcionales de origen vegetal. Revista Mexicana de Ciencias Farmaceuticas, 37(4), 58-68. [ Links ]

Ekpenyong, C. E., Akpan, E. E., & Daniel, N. E. (2014). Phytochemical Constituents, Therapeutic Applications and Toxicological Profile of Cymbopogon citratus Stapf (DC) Leaf Extract. Journal of Pharmacognosy and Phytochemistry, 3(1), 133-141. [ Links ]

Ekpenyong, C. E., Akpan, E., Ekpenyong, C. E., & Nat, C. J. (2015). Etnofarmacología , fitoquímica y actividades biológicas de extractos de Cymbopogon citratus ( DC .) Stapf Machine Translated by Google. Chino Diario de Natural Medicamentos, 13(5), 321-337. [ Links ]

Enriquez, M., Perez, M., Manobanda, P., Villafuerte, F., Yanez, K., Ramos, M., & Morell, L. (2018). Antioxidant activity and differentiation of essential oils of Guaviduca (Piper carpunya L.) and Sacha Ajo (Mansoa alliacea L.). Italian Journal of Food Science, 19-28. [ Links ]

Enríquez-Estrella, Miguel Ángel, Sonia Elizabeth Poveda-Díaz, y Glenda Indira Alvarado-Huatatoca. 2023. «Bioactivos De La Hierba Luisa Utilizados En La Industria».Revista Mexicana De Ciencias Agrícolas14 (1). México, ME:1-11. https://doi.org/10.29312/remexca.v14i1.3249. [ Links ]

Falcón. L., S. G. R. (2021). Acerca de los métodos teóricos y empíricos de investigación: significa- ción para la investigación educativa. Revista Conrado, 17(3), 22-31. [ Links ]

Gallegos Zurita, M. (2016). Las plantas medicinales: principal alternativa para el cuidado de la salud, en la población rural de Babahoyo, Ecuador. Anales de La Facultad de Medicina, 77(4), 327. https://doi.org/10.15381/anales.v77i4.12647 [ Links ]

García, L. (2009). Lípidos dietarios y salud humana. Veterinaria Cuyana, 4. [ Links ]

García Ortega, A., Muy Rangel, D., Puello Cruz, A., Villa Lopez, Y., & Preciado Iñiguez, Kattia Escalante Rojas, M. (2010). Uso de ingredientes de origen vegetal como fuentes de proteína y lípidos en alimentos balanceados para peces marinos carnívoros. Avances En Nutrición Acuícola X - Memorias Del Décimo Simposio Internacional de Nutrición Acuícola, 321-340. [ Links ]

García, S. (2013). Actividad herbicida del aceite esencial de Thymus capitatus ( L .) Hoffmanns . et Link . y efectividad en. [ Links ]

Giler Miranda, J. L. (2018). Efecto in Vitro Antimicrobiano Del Extracto Etanólico De La Hierba Luisa Cymbopogon citratus Sobre Streptococcus Mutans. [ Links ]

Guevara, G., Verdesoto, A., & Castro, N. (2020). Metodologías de investigación educativa (descriptivas, experimentales, participativas, y de investigación-acción). Revista Científica Mundo de La Investigación y El Conocimiento, 3, 163-173. https://doi.org/10.26820/recimundo/4.(3).julio.2020.163-173 [ Links ]

Heredia, M. R. B. De. (2016). Nutrición. Farmacia Profesional, 30, 3-5. [ Links ]

Hurtado, S. V., & Zamora, N. A. S. C. G. L. Z. C. D. B. A. A. C. (2015). Alimentos funcionales y su relación con el estado de salud. In Alimentos Funcionales y Compuestos Bioactivos (Issue August). http://www.plazayvaldes.com/ [ Links ]

Intriago, Z. (2019). Los riesgos de manipulación de los alimentos funcionales y su importancia para la salud. Correo Científico Médico, 23(3), 1-14. [ Links ]

Jaramillo, J., Ii, R. L., & Guayas, M. (2017). Composición química de los aceites esenciales de las hojas de ocho plantas medicinales cultivadas en Ecuador Chemical composition of essential oils from leaves of eight medicinal plants grown in Ecuador Haydelba D’Armas, I,II Karen Montesinos, II Carmita. Revista Cubana de Plantas Medicinales, 22(2). www.revplantasmedicinales.sld.cu/index.php/pla/rt/printerFriendly/428/282 [ Links ]

Julieth, C., & Cetina, O. (2018). Evaluación de la actividad antioxidante de extractos de Cymbopogon citratus (DC. Stapf) provenientes de matrices tratadas con radiación UV-B. [ Links ]

Kaur, R. R. A. (2021). Efectos de Hibiscus rosa síntesis y Cymbopogon citratus contra los áfidos: una revisión. Archivos de Plantas, 21, 2317-2322. [ Links ]

Kim, C., Park, J., Lee, H., Hwang, D.-Y., Park, S. H., & Lee, H. (2022). Evaluation of the EtOAc Extract of Lemongrass ( Cymbopogen citratus ) as a Potential Skincare Cosmetic Material for Acne Vulgaris . Journal of Microbiology and Biotechnology, 32(5), 594-601. https://doi.org/10.4014/jmb.2201.01037 [ Links ]

López, J. C. M. (2022). Evaluación in vitro de la eficacia antimicrobiana de la hierbaluisa (Cymbopogon citratus) sobre el Staphylococcus Aureus. [ Links ]

Majewska, E., Kozlowska, M., Gruczynska-Sekowska, E., Kowalska, D., & Tarnowska, K. (2019). Lemongrass (Cymbopogon citratus) essential oil: Extraction, composition, bioactivity and uses for food preservation - A review. Polish Journal of Food and Nutrition Sciences, 69(4), 327-341. https://doi.org/10.31883/pjfns/113152 [ Links ]

Márquez, M. M. (2019). Configuración económica de la industria farmacéutica. Actualidad Contable Faces, 22, 61-100. [ Links ]

Márquez, R. S. (2012). Effects of phytoestrogens on mammalian reproductive physiology. Tropical and Subtropical Agroecosystems, 15, 129-145. [ Links ]

Mena-Rodríguez, E., Ortega-Cuadros, M., Merini, L., Melo-Ríos, A. E., & Tofiño-Rivera, A. (2018). Efecto de agroinsumos y aceites esenciales sobre el suelo de hortalizas en el Caribe Colombiano. Ciencia y Tecnología Agropecuaria, 19(1), 103-124. https://doi.org/10.21930/rcta.vol19_num1_art:535 [ Links ]

Montero, S. L., Cardoso, J. C., & Gonzalo, E. (2017). Vinagre triple 12,5%: herbicida natural en siembra directa de maíz (zea mays) orgánico . Espamciencia, 8(2), 13-21. moz-extension://5d196493-d44e-456b-a7c4-c934d15796e0/enhanced-reader.html?openApp&pdf=https%3A%2F%2Fdialnet.unirioja.es%2Fdescarga%2Farticulo%2F7020055.pdf [ Links ]

Morillo, J. A., & Ibarra, M. C. B. (2018). Eficacia inhibitoria del aceite esencial de Cymbopogon citratus sobre cepas de Porphyromona Gingivalis: Estudio in vitro. Odontología, 20(2), 5-13. https://doi.org/10.29166/odontologia.vol20.n2.2018-5-13 [ Links ]

Narayan, P., & Maheshwari, a R. K. (2017). Astonishing Cymbopogon citratus (Lemongrass) for Healthcare Prakash. Research Journal of Chemical and Environmental Sciences, 5(October), 84-90. [ Links ]

Nida Tabassum, K. (2020). Therapeutic benefits of lemongrass and tea tree. Annals of Civil and Environmental Engineering, 4(1), 27-29. https://doi.org/10.29328/journal.acee.1001022 [ Links ]

Oladeji, O. S., Adelowo, F. E., Ayodele, D. T., & Odelade, K. A. (2019). Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Scientific African, 6, e00137. https://doi.org/10.1016/j.sciaf.2019.e00137 [ Links ]

Oliveira, C. C. A., & Santos, J. S. (2021). Compuestos activos del limoncillo (Cymbopogon citratus): una revisión. Investigación, Sociedad y Desarrollo, 10, 1-11. [ Links ]

Pregowska, A., Konowrocki, R., & Szolc, T. (2012). Los polifenoles, compuestos de origen natural con efectos saludables sobre el sistema cardiovascular. Vibrations in Physical Systems, 25(1), 329-334. https://doi.org/10.3305/nh.2012.27.1.5418 [ Links ]

Ramirez, L. A. R., Moreno, E. R., Ortíz, A. I. V., Ruvalcaba, J. C., & Rico, J. A. (2021). Review of the composition of energy drinks and health effects perceived by young consumers. Jonnpr, 6(1), 177-188. https://doi.org/10.19230/jonnpr.3800 [ Links ]

Ramírez Mayans, J. A., García Campos, M., Cervantes Bustamante, R., Mata Rivera, N., Zárate Mondragón, F., Mason Cordero, T., & Villarreal Espinosa, A. (2003). Transición alimentaria en México. Anales de Pediatría, 58(6), 568-573. https://doi.org/10.1016/s1695-4033(03)78123-5 [ Links ]

Ramos, M. I. Q. (2016). “aceites esenciales y compuestos fenólicos de Cymbopogon citratus (hierba luisa) en la producciòn de pollos pio pio.”Links ]

Rojas, J., Ronceros, S., Palacios, O., & Sevilla, C. (2012). Efecto anti-Trypanosoma cruzi del aceite esencial de Cymbopogon citratus (DC) Stapf (hierba luisa) en ratones Balb/c. Anales de La Facultad de Medicina, 73(1), 7. https://doi.org/10.15381/anales.v73i1.803 [ Links ]

Roque-Martínez, Ugandaa; Alonso-Palacios, María Esther; Champion-Martínez, Isabel Elena; Hernández Ramos, Darío; Zárate Castillo, G. (2018). Viabilidad del uso de zacate limón (Cymbopogon citratus) en la elaboración de alimentos funcionales. XI Congreso Nacional 2018 Agroindustrial / Alimentario / Biotecnológico.Links ]

Salama, R., & Bustos, G. (2018). Alimentos funcionales consumidos en un centro de asesoramiento nutricional. Investigación, Ciencia y Universidad, 2(3), 131. [ Links ]

Salazar, M. del P. (2006). 1 Created with novaPDF Printer el uso de la proteina hdrolizada de soya para bebidas hidratantes. [ Links ]

Silva, G. M. (2016). Evaluación del uso de aceite esencial Cymbopogon citratus Stapf (hierba luisa) en la conservación y almacenamiento de tres frutos de consumo masivo del mercado central del cantón Quevedo.Links ]

Torres, E. I., Herzberg, A. Z., De, M. M., Fitoestrógenos, L., Su, Y., Con, R., & Cáncer, E. L. (2017). Mecanismos moleculares de los fitoestrógenos y su relación con el cáncer. Revista de Educación Bioquímica, 36(4), 101-110. [ Links ]

Totosaus, A. (2011). Aceites y grasas vegetales como ingrediente funcional en productos cárnicos. Nacameh, Vol. 5, S108-S118. http://cbs.izt.uam.mx/nacameh/v5s1/Nacameh_v5s1_108-118Totosaus.pdf [ Links ]

Yilmaz-Akyuz, E., Ustun-Aytekin, O., Bayram, B., & Tutar, Y. (2019). Nutrients, bioactive compounds, and health benefits of functional and medicinal beverages. In Nutrients in Beverages: Volume 12: The Science of Beverages. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816842-4.00006-X [ Links ]

Z. Duran, O. Quintero, D. D. (2021). Características del aceite esencial de limonaria ( Cymbopogon citratus ) producido en Yopal, Colombia. Ingenio Magno, 12(2). [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License