SciELO - Scientific Electronic Library Online

 
vol.42 issue2Aeromagnetic data leveling by the implementation of orthogonal polynomials author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Geoacta

On-line version ISSN 1852-7744

Abstract

CORNERO, Cecilia et al. Determination of a static gravimetric geoid for the Santa Fe province, Argentina. Geoacta [online]. 2017, vol.42, n.2, pp.82-95. ISSN 1852-7744.

At present, the determination of the geoid has become one of the fundamental Geodesy objectives, in order to provide a solution for the altimetric problem. This can be considered in the context of the terrestrial gravity field modeling, since all the calculation methods involve in one way or another its knowledge. This work consists in the calculation of four static gravimetric geoid models for the province of Santa Fe (Argentina) and its validation with terrestrial information from ellipsoidal heights (GNSS) and Leveling Networks (RN). The applied methodology in this investigation was the Remove-Restore technique, and various Global Geopotential Models (MGG) along with 39,771 terrestrial gravimetric observations were incorporated in the study. The calculation of the models was accomplished with the Canadian SHGEO software package (Stokes-Helmert Geoid Software), developed by the Department of Geodesy and Geomatic Engineer of the University of New Brunswick, Canada. The global geopotential models GO_CONS_GCF_2_DIR_R5 and EIGEN6C4, limited to degree and order 200 and 300, were used as a reference for the calculation. Also, the SAM3s_v2 digital terrain model and the DTU10 oceanic gravity model were used. The statistical analysis was performed with 100 points with double altimetric information (GNSS on leveling), resulting the model based on the GO_CONS_GCF_2_DIR_R5 up to grade and order 300 the one with greater consistency. This model also presented the minimum geoidal height mean values (NGNSS-RN) with respect to those obtained in the calculated model (N) (0.096m), and an RMS of the difference of 0.221 m.

Keywords : Geoid model; Gravimetry; GNSS.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License