SciELO - Scientific Electronic Library Online

 
vol.8 número2An efficient density matrix renormalization group algorithm for chains with periodic boundary condition índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Papers in physics

versión On-line ISSN 1852-4249

Resumen

LISANDRINI, Franco T; LOBOS, Alejandro M; DOBRY, Ariel O  y  GAZZA, Claudio J. Topological quantum phase transition in strongly correlated Kondo insulators in 1D. Pap. Phys. [online]. 2016, vol.8, n.2, pp.01-10. ISSN 1852-4249.  http://dx.doi.org/10.4279/PIP.080005.

We investigate, by means of a field-theory analysis combined with the density-matrix renor-malization group (DMRG) method, a theoretical model for a strongly correlated quantum system in one dimension realizing a topologically-ordered Haldane phase ground state. The model consists of a spin-1/2 Heisenberg chain coupled to a tight-binding chain via two competing Kondo exchange couplings of different type: a s-wave Kondo coupling (JKs ), and a less common p-wave (JKp ) Kondo coupling. While the first coupling is the standard Kondo interaction studied in many condensed-matter systems, the latter has been recently introduced by Alexandrov and Coleman Phys. Rev. B 90, 115147 (2014) as a possible mechanism leading to a topological Kondo-insulating ground state in one di-mension. As a result of this competition, a topological quantum phase transition (TQPT) occurs in the system for a critical value of the ratio JKs /JKp , separating a (Haldane-type) topological phase from a topologically trivial ground state where the system can be essentially described as a product of local singlets. We study and characterize the TQPT by means of the magnetization profile, the entanglement entropy and the full entanglement spectrum of the ground state. Our results might be relevant to understand how topologically-ordered phases of fermions emerge in strongly interacting quantum systems.

Palabras clave : Topological Insulators; Topological Quantum Phase; Entanglement Entropy; Entanglement Spectrum.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons