SciELO - Scientific Electronic Library Online

 
vol.34 número3Hemodiafiltración de alto volumen en pacientes en hemodiálisis crónica: importancia de la depuración de ß2 microglobulina en el control de la calidad del procedimientoHematuria incoercible en poliquistosis renal: tratamiento exitoso mediante embolización arterial superselectiva incoercible índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista de nefrologia, dialisis y trasplante

versão On-line ISSN 2346-8548

Resumo

MASCHERONI, Claudio A.. Physiopathology glomerular hyperfiltration in diabetes: Part I. Rev. nefrol. dial. transpl. [online]. 2014, vol.34, n.3, pp.130-154. ISSN 2346-8548.

Glomerular hyperfiltration (HF) in diabetic kidney disease is a complex hemodynamic phenomenon which occurs in early stages of the disease'™s progress and probably has negative influences, regarding the progression to the occurrence of microalbuminuria and the progress of evident diabetic nephropathy (DN). Factors involved in its physiopathology are numerous, they include: diabetic biochemical environment and several humoral factors like nitric oxide, prostaglandins, renin-angiotensin-aldosterone system, atrial natriuretic peptide, reactive oxygen species, other humoral and growth factors. These factors cause or enhance the vasodilatation of the afferent arteriole (AA). Factors with vasoconstriction function over the efferent arteriole, all considered primary vascular factors. However, these factors cannot explain other observed alterations and they constitute primary tubular abnormalities such as the increased reabsorption at the proximal tubule, probably conditioned by kidney growth in DBT and by the overexpression of the SGLT2 cotransporter. This higher proximal reabsorption would produce a lower arrival of solutes to the macula densa (MD). This would be incompatible with an action of the tubuloglomerular balance system, but it would be compatible with an action performed by the tubuloglomerular feedback system (TGFB) that senses the decrease of the ClNa concentration at the MD. Also deactivating the TGFB and causing vasodilatation of the AA, resulting in an increase of glomerular filtration (GF) and renal plasma flow (RPF), characteristic of the HF process. These two processes (vascular and tubular) could act in synergy or simultaneously, depending on the metabolic and progressing conditions of the diabetic kidney disease. Similar mechanisms could explain the salt paradox, whereby a lowsalt diet would exacerbate the HF phenomenon and a high-salt diet would decrease the GF and the RPF, which could result in unexpected clinical implications. The common therapy measures for HF strict metabolic control, a low-protein diet, and the wide clinical use of IECA or AT1 blockers (not clinically tested for this purpose) seem to be added to the new specific inhibitors of the SGLT2 cotransporter, which have shown beneficial effects in several aspects of the diabetic management. There are already some works with specific effect over the HF that seem to be encouraging. There is less experience with the potential use of C-peptide, as a therapeutic tool in these clinical situations. Clearly, defining the mechanisms involved in this complex phenomenon, will allow a better knowledge of it and a better therapeutic approach.

Palavras-chave : Physiopathology; Glomerular hyperfiltration; Diabetes.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons